
V4RBR-1

VALENTINA
for REALbasic Reference

Paradigma Software Inc.
www.paradigmasoft.com

© 1998 - 2008

V4RBR-2

Contents
Valentina for REALbasic installation ..5
Where to start ..6
Deployment of your application ...6
Converting V4RB 1.x projects to 2.0 ...7
Valentina Enumeration Types (Enums) ...10
Valentina Module ...15

Properties Description ...16
Initialisation Methods ...18
Utility Methods ...20

The Class Hierarchy ..24
Class VDataBase ..25

Class Description ...29
Properties Description ...30
VDatabase: Local vs Remote Creation ...37
Disk Methods ...38
Database Structure Methods ...42
Table Methods ...45
Link Methods ...46
SQL Methods ...47
IndexStyle Methods ...50
Encryption Methods ...51
Dump Methods ..54
Utility methods ...56

Class VTable ...57
Class Description ...61
Properties Description ...62
Field Methods ..66
Link Methods ...67
Record Methods ..68
Cache Methods ...70
Navigation Methods ...71
Working with Database Structure ..73
VTable Encryption Methods ...78
Dump Methods ..81
Selection Methods ...82

Class VField ..84
Class Description ...87
Properties Description ...88
Value Methods ...92
Search Methods ..93
VField Encryption Methods ..101

Numeric Fields...104
Class VDate ..105

VDate Methods ..106
Class VTime ..107

VTime Methods ..108
Class VDateTime ...109

VDateTime Methods .. 110

V4RBR-3

Class VString ... 111
Class VVarChar ... 111
Class VString ... 112
Class VVarChar ... 112

Properties Description ... 113
Class VFixedBinary ... 114
Class VVarBinary ... 114

Properties Description ... 115
Styled Text ... 116

Class VBLOB .. 117
Class Description ... 118
Properties Description ... 119
Methods ..120

Class VText ..122
Class Description ...123

Class VPicture ...124
Class Description ...125
Methods ..126

Class VObjectPtr ...127
Properties Description ...129
Constructor ..130

Class VCursor ...132
Class Description ...135
Properties Description ...136
Creation of Cursor ...138
Field Methods ..139
Type casting Methods ..140
Navigation Methods ...143
Record Methods ..145
Import/Export Methods ..148

Class VSet ...151
Properties Description ...152
Constructor ..153
Element Methods ...154

Class VArraySet ..156
Constructor ..157
Methods ...158
Set Operations ...159

Class VBitSet ..161
Constructor ..162
Set Operations ...163

Class VSetIterator ...165
Properties Description ...166
VSetIterator Methods ...167

Class VLink ...168
Properties Description ...170
Table Methods ...171
Search Methods ..173
Linking Methods ..175

Class VLink2 ...178
Properties Description ...179

Class VBinaryLink ...180

V4RBR-4

Class VConnection ..181
Properties Description ...182
Creation of VConnection ...183
Connection Methods ..184

Class VServer ...185
Class Description ...187
Properties Description ...188
Creation of VServer ...189
Connection Methods ..190
INI-File Methods ..191
Master Database Methods ..192
User Methods ..193
DatabaseInfo Methods ..195

Class VDatabaseInfo ...196
Methods ...197

Class VClientInfo ...198

Valentina for REALbasic installation
To install Valentina for REALbasic you should run installer. Installer will ask you to point
the plugin folder of your REALbasic.

Installer for MacOS X installs on your computer:
• V4RB_2 folder into REALbasic:plugins folder. This folder contains V4RB plugin itself and
folder Examples.
• VComponents folder into /Library/CFMSupport. This folder contains several DLLs, see
detailed description of VComponents folder in the Valentina Kernel.pdf.

Installer for Windows installs on your computer:
• V4RB_2 folder into REALbasic:plugins folder. This folder contains V4RB plugin itself and
folder Examples.
• VComponents folder into
 C:/Program Files/Paradigma Software/VComponents_win_cw
This folder contains several DLLs, see detailed description of VComponents folder in the
Valentina Kernel.pdf.
• append to the system variable PATH the path to VComponents folder, so Windows can
find and load DLLs.

To Uninstall:
There is no default uninstaller, so you need manually delete installed folders.

REALbasic start:
After installation you can start REALbasic. If you have REALbasic PRO then in the menu
"File / Add Data Sources" you can see 2 new items:
 New Valentina ...
 Select Valentina ...
which allow you work with V4RB in RBDB way.

Also V4RB adds to REALbasic set of classes and enumarated types. All Valentina classes
start with letter "V". All enumarated types start with "EV". You can type for example 2 letters
"va" and get from REALbasic auto-complition of word "Valentina".

If you use REALbasic Standard then you need disable RBDB features of V4RB, because
RB Standard do not allow use them. To do this you need just create any file with name
DisableRBDB inside of plugins folder of REALbasic. In this case items in the menu "Add
Data Sources" will not present and you can use only classes of V4RB.

V4RBRef-5

Installation

Installation

Where to start
You should read ValentinaKernel.pdf that contains general information about Valentina
database and its features, also ValentinaSQL.pdf that contains description of SQL sup-
ported by Valentina.

Then you can read this document, which contains reference of V4RB classes, methods
and constants and V4RB_Tutorial.

Also you should study examples of V4RB. It is recommended to use ExampleGuide.pdf to
learn examples. This document have additional descriptions of examples and even pictures
that simplify understanding.

Deployment of your application
After you have compile your application you need yet bundle it with VComponents folder.
You have now 2 choices:

1) Everything is inside of single folder "MyAppFolder".

This way is the most preferable. Because you can install/uninstall application as single
folder to computer of your user. For this way you need to do the following steps.

• create folder with name you need, e.g. "MyAppFolder".
• copy inside the executable which REALbasic have built.
• copy inside all files from the VComponents folder (but not folder itself).

Now you can distribute this "MyAppFolder" folder.

Note, Valentina searches first of all the application folder for "vresources" folder. If it finds
it here, then Valentina assumes that all other items of Vcomponents folder also here.

2) Valentina folder is located in the system area.

This way is the same as you have it now during development. VComponents folder is
located in the central place of OS where any application can find it.

This way can be choosed if you develop several small applications that all use Valentina.
Using this way you have VComponents folder only in one place on a user computer.

V4RBRef-6

Installation

Installation

Converting V4RB 1.x projects to 2.0
Valentina 2.0 introduce not only new API and features, but some old functions was renamed,
changed number of parameters, and so on. So you need update your existed V4RB 1.x
project. Here you can see list of steps which you should follow to do this work.

General issues

• If your application based on V4RB1 have do any ConvertEncoding/DefineEncoding to/
from UTF8 strings then remove all this code because V4RB2 accept UTF8 strings from
REALbasic self.

• remove ValentinaUtility methods

• V4RB 2.0 have enums with names EVxxx for constants.

• Find/replace a bunch more kv_ constants with the EV... enumerator equivalents. Most
of the ones you need to find will be in the EVFlag domain, but also some in other places
like EVOnDelete domain. Compiler will tell you which ones you need to replace since you
just threw out ValentinaUtilities.

• IF you have use in the old project NOT kV_constants, but just NUMERIC values of con-
stants then you must find all such places and replace on new Evxxxx constants. This is
very very important because 2.0 can have other numeric values for constants.

• V4RB 2.0 supports a new style of errors via VException class. If you convert old 1.x proj-
ect then you have to use db.LastError style. You can disable new style and return back old
style. Use for this Valentina.ThrowExceptions property.

• Global methods are collected in the MODULE “Valentina”, so now:
 ValentinaInit() => Valentina.Init()
 ValentinaShutDown => Valentina.ShutDown()
 ValentinaEscapeString => Valentina.EscapeString()
 ValentinaDebugOn => Valentina.DebugLevel property
 ...

• ValentinaInit() renamed to Valentina.Init()
• ValentinaShutdown() renamed to Valentina.ShutDown()
• ValentinaSetExtensions() renamed to Valentina.SetExtensions()
• ValentinaVersion() renamed to Valentina.Version()

• Valentina.Init() doesn’t return a value anymore. Use the Valentina.CacheSize
property to check if the engine was properly initiated.

• if in the 1.x version you have set some encoding for strings BEFORE/AFTER
send strings to V4RB then now you no need to do this.
Although for now V4RB 2.0 expect to get UTF8 strings -- default encoding of
V4RB

V4RBRef-7

Converting V4RB 1.x projects to 2.0

Converting V4RB 1.x projects to 2.0

• Dcon and DbgView support depricated. instead we have now V4RB_LOG.txt file that get
output from V4RB. So change
 ValentinaDebugON(2)
on
 Valentina.DebugLevel = EVDebugLevel.kLogParams.

It is very recommended to use log file during development. Then in case of any problems
you can open V4RB_Log.txt file and monitor a lots of useful information.

Database

• VDatabase.Open() / .Create() no longer return a value. Catch exceptions or use VData-
base.ErrNumber to check errors if you choose Valentina.ThrowExceptions = false.

• If you use Classes, then in constructor of your VDatabase subclass you must add call to
parent constructor of VDatabase class. See examples.

Tables

• class VBaseObject renamed to VTable, so you need to reset the super-class for all your
Table classes.

• The GotoRecID() no longer exists. Use RecID and RecordExists() :

 If RecordExists(inRec) then
 RecID = inRec
 end if

• The AddRecord() function now returns RecID of new record.

• The DeleteRecord() function no longer returns a value.

Cursors

• Vcursor.SqlString property deprecated.
• VCursor.CurrentPosition renamed to VCursor.Position.
• Check that db.SqlSelect() have correct parameter inReadWrite.

V4RBRef-8

Converting V4RB 1.x projects to 2.0

Converting V4RB 1.x projects to 2.0

Fields

• Property BaseObject of class VField changed to property Table. Do find/replace.

• Change VField.Nullable to VField.IsNullable.
• Change VField.Compressed to VField.IsCompressed.
• Change VField.Indexed to VField.IsIndexed.
• Change VField.Unique to VField.IsUnique.

• Vfield.SetMethod() no longer exists.
Instead you should on creation of a field provide the method formula into the constructor
of field via last parameter. IF you want change existed method, then use
 Vfield.MethodText property

• property Language for Vstring/VarChar/Text removed. Also it not exists any more in the
constructors of this classes. Instead VDatabse, VTable and VField classes have now new
properties:
 .Locale
 .CollatioAttribute
 .StorageEncoding

SQL

• 2.0 SQL do NOT allow you name or tables with key words of SQL. For example field with
name “REFERENCES” will not work in SQL or field with name “DEFAULT”. You can find
full list of keywords in the ValentinaSQL.pdf

It is recommended always to use some prefix for table/field names, e.g. tblPerson,
fldName

• Replace LIKE with REGEX in case you use regex expressions or simply adopt new
SQL92 LIKE syntax:

 OLD NEW Meaning
 --
 LIKE ‘string’ LIKE ‘%string%’ Contains
 LIKE ‘\Astring\Z’ LIKE ‘string’ is equal to
 LIKE ‘\Astring’ LIKE ‘string%’ starts with
 LIKE ‘string\Z’ LIKE ‘%string’ ends with

* Keyword NO_CASE deprecated in 2.0. For RegEx you can use instead "(?i)".
 Also in 2.0 you cam use db.CollationAttribute to specify case of searches.

* Make sure that all string literals are wrapped by SINGLE QUOTES ' '.

• Look for all ‘ORDER BY’ inside ‘SELECT’ clauses. The ORDER BY column has to be
included in the columns SELECTed or equal to *.

 SELECT * FROM myTable ORDER BY myField <- Good
 SELECT myField FROM myTable ORDER BY myField <- Good
 SELECT myField FROM myTable ORDER BY myOtherField <- Wrong!

V4RBRef-9

Converting V4RB 1.x projects to 2.0

Converting V4RB 1.x projects to 2.0

Valentina Enumeration Types (Enums)
Valentina for REALbasic 2.0 introduces Enumaration Types - Enums.

REALbasic 5.5 and 6.0 do not support Enums natively. So Valentina for REALbasic does
a trick using Мodules of REALbasic. This yields a solution that looks exactly like the enum
syntax in Java:

 EnumName.Name

Each Valentina's enumeration type starts with the prefix "EV". This allows you to use the
power of REALbasic auto-completion. Just type EV and you will see the list of all enumera-
tion types of Valentina for REALbasic.

V4RBRef-10

Enumeration Types

Enumeration Types

EVValueAccess
 forAdd = 1
 forUpdate = 2

EVOs
 kOsDefault = 0
 kOsMac = 1
 kOsWindows = 2
 kOsUnix = 3

EVDateFormat
 kMDY = 0
 kDMY = 1
 kYMD = 2

EVDebugLevel
 kLogNothing = 0
 kLogErrors = 1
 kLogFunctions = 2
 kLogParams = 3

EVDbMode
 kDscDatBlbInd = 1
 kDsc_DatBlbInd = 2
 kDsc_DatBlb_Ind = 3
 kDsc_Dat_Blb_Ind = 4
 kDscDatBlb_Ind = 5
 kDscDat_Blb_Ind = 6
 kDscDatInd_Blb = 7
 kDsc_DatInd_Blb = 8

EVFlag
 fNone = 0
 fNullable = 1
 fIndexed = 2
 fUnique = 4
 fIndexByWords = 8
 fCompressed = 16
 fMethod = 32
 fIdentity = 64

EVOnDelete
 kNoAction = 0
 kSetNull = 1
 kCascade = 2
 kRestrict = 3
 kDefault = 4

V4RBRef-11

Enumeration Types

Enumeration Types

EVOnUpdate
 kNoAction = 0
 kSetNull = 1
 kCascade = 2
 kRestrict = 3
 kDefault = 4

EVRecursionDirection
 kFromParentToChild = 0
 kFromChildToParent = 1

EVStorageType
 kDefault = 0
 kDisk = 1
 kRAM = 2

EVTableKind
 kTblPermanent = 0
 kTblTemporary = 1

EVCursorLocation
 kClientSide = 1
 kServerSide = 2

EVLockType
 kNoLocks = 1
 kReadOnly = 2
 kReadWrite = 3

EVCursorDirection
 kForwardOnly = 1
 kRandom = 2

EVLinkType
 kMany = 0
 kOne = 1

EVSearch
 kPreferIndexed = 0
 kPreferNonIndexed = 1

V4RBRef-12

Enumeration Types

Enumeration Types

EVFieldType
 kTypeEmpty = 0
 kTypeEnum = 1
 kTypeBoolean = 2
 kTypeByte = 3
 kTypeShort = 4
 kTypeUShort = 5
 kTypeMedium = 6
 kTypeUMedium = 7
 kTypeLong = 8
 kTypeULong = 9
 kTypeLLong = 10
 kTypeULLong = 11

 kTypeFloat = 12
 kTypeDouble = 13
 kTypeLDouble = 14
 kTypeDecimal = 15

 kTypeDate = 16
 kTypeTime = 17
 kTypeDateTime = 18

 kTypeString = 19
 kTypeVarChar = 20

 kTypeFixedBinary = 21
 kTypeVarBinary = 22

 kTypeBLOB = 23
 kTypeText = 24
 kTypePicture = 25
 kTypeSound = 26
 kTypeMovie = 27

 kTypeRecID = 28
 kTypeOID = 29

 kTypeObjectPtr = 30
 kTypeObjectsPtr = 31

 kTypeTimeStamp = 32

EVDumpType
 kSQL = 1
 kXML = 2

EVDataKind
 kStructureOnly = 1
 kStructureAndRecords = 2
 kRecordsOnly = 3

V4RBRef-13

Enumeration Types

Enumeration Types

EVVerboseLevel
 kNone = 0
 kLow = 1
 kNormal = 2
 kHigh = 3
 kVeryHigh = 4

EVColAttribute
 kFrenchCollation = 0
 kAlternateHandling = 1
 kCaseFirst = 2
 kCaseLevel = 3
 kNormalizationMode = 4
 kStrength = 5
 kHiraganaQuaternaryMode = 6
 kNumericCollation = 7
 kAttributeCount = 8

EVColAttributeValue
 kDefault = -1

 kPrimary = 0
 kSecondary = 1
 kTertiary = 2
 kDefaultStrength = 2
 kQuaternary = 3
 kIdentical = 15

 kOFF = 16
 kON = 17

 kShifted = 20
 kNonIgnorable = 21

 kLowerFirst = 24
 kUpperFirst = 25

EVPictType
 kUnknown = 0
 kMacPict = 1
 kWinDIB = 10
 kJPG = 20
 kTIFF = 21

V4RBRef-14

Enumeration Types

Enumeration Types

Valentina Module
Properties

CacheSize as Integer (r/o)
DebugLevel as EVDebugLevel
FlushEachLog as boolean
ThrowExceptions as Boolean
Version as String (r/o)

DatabaseCount as integer
Database(inIndex as Integer) as VDatabase

Initialisation Methods

Init(
 inCacheSize as Integer,
 inMacSerialNumber as String = "",
 inWinSerialNumber as String = "")

InitClient()

ShutDown()
ShutDownClient()

Convert_1_2(
 inOldDb_Version1 as FolderItem,
 inNewDb_Version2 as FolderItem,
 inLoadRecords as Boolean,
 inDb1Key as String = "",
 inDb1StructureKey as String = "",
 inNewSegmentSize as integer = 0)

Utility Methods

SetExtensions(inDesc as string, inDat as String, inBlb as String, inInd as String)
EscapeString(inStr as string, inForRegEx as Boolean = false) As String

GetDatabaseFormatVersion(inVdbFile as FolderItem) as Integer
GetCurrentFormatVersion() as Integer

GetSchemaVersion(inVdbFile as FolderItem) as Integer
GetDatabaseMode(inVdbFile as FolderItem) as Integer

GetIsStructureEncrypted(inVdbFile as FolderItem) as Boolean

LocateBonjourService(inType As String, inDomain As String) As VStringArray

V4RBRef-15

Valentina Module

Valentina Module

Properties Description

CacheSize as Integer (r/o)

The current size of Valentina cache in bytes. You should assign the cache size when calling
the Valentina.Init() method. There is no way to change this parameter at runtime.

Example:

 size = Valentina.CacheSize

DebugLevel as EVDebugLevel

This allows you to set the debug level in Valentina for REALbasic.

Any debug level above 0 will create a file which outputs the results. The file will be named
“V4RB_Log.txt”. It will be created in the same directory as the project. The only exception is
for Mach-O builds in Mac OS X where it will be created one level inside the executable.

The valid values are:
 kLogNothing = 0 - no debug messages.
 kLogErrors = 1 - log a message only when an error occurs.
 kLogFunctions = 2 - log every function.
 kLogParams = 3 - log every function and its parameters.

Example:

 Valentina.Init(3 * 1024 * 1024)
 #if DebugBuild
 Valentina.DebugLevel = EVDebugLevel.kLogParams
 #endif

Note: Do not forget to set the debugging level to zero for your final product release.

FlushEachLog as Boolean

If this property is TRUE then Valentina will flush the disk log file after each message. This
slow down work significantly. But is very useful if your application crashes.

TIP: You can wrap the problematic code only.

Example:

 Valentina.FlushEachLog = true
 // some debugged code
 Valentina.FlushEachLog = false

V4RBRef-16

Valentina Module Properties

Valentina Module

ThrowExceptions as Boolean

If this property is TRUE (default value) then Valentina for REALbasic 2.0 or new will throw
REALbasic exceptions. Otherwise Valentina 2.0 will not throw exceptions and you need
check the property VDatabase.errNumber to see if a Valentina call was successfull.

Example:

 Valentina.ThrowExceptions = FALSE

Version as String (r/o)

Returns the version of the Valentina engine.

Example:

 ver = Valentina.Version

DatabaseCount as integer

Returns: integer

Returns the count of databases that was instantinated in your application. The result counts
both opened and closed databases. The result counts both local and remote databases.

Example:

 res = Valentina.DatabaseCount

Database(inIndex as integer) as VDatabase

Returns: integer

Returns a database from the array of databases by an index.

See also:

 Valentina.DatabaseCount()

Example:

 db = Valentina.Database(i)

V4RBRef-17

Valentina Module Properties

Valentina Module

Initialisation Methods

Init(
 inCacheSize as Integer,
 inMacSerialNumber as String = "",
 inWinSerialNumber as String = "")

Parameter: Description:
inCacheSize The size of the database cache in bytes.
inMacSerialNumber The serial number for use under Mac OS.
inWinSerialNumber The serial number for use under Windows.

To improve disk access, Valentina uses a cache mechanism. Using the Valentina.Init()
method, you must define the size of the cache. It should be 1MB if the database is tiny, or
it can be several megabytes if the database is large.

Tip: By default, it is a good idea to allocate half of available memory to the cache.

Only registered users are allowed to build and deploy Valentina-based applications, except
for testing purposes. If you are a registered user, you can specify either the MacOS or the
Windows OS serial number, or both. If Valentina receives an empty string, it will work in the
time limited, demonstration mode. After ten minutes in demonstration mode, any request
to the database will be ignored and Valentina will respond with three beeps.

Note: You must use your own security methods to ensure that you do not expose your se-
rial numbers in your built applications.

Example:

 err = Valentina.Init(5 * 1024 * 1024) // demo

InitClient()

Initializes the Valentina kernel for work in the client/server mode.

Example:

 Valentina.InitClient()

V4RBRef-18

Valentina Module Initialisation Methods

Valentina Module

ShutDown()

When you finish working with Valentina, you should shut down it.This method closes all
open databases and destroys the cache.

Example:

 Valentina.Init(5 * 1024 * 1024, “” , “”)
 // some work here
 Valentina.ShutDown()

ShutDownClient()

Executes clean up and finalization of work in the client/server mode.

Пример:

 Valentina.ShutDownClient()

Convert_1_2(
 inOldDb_Version1 as FolderItem,
 inNewDb_Version2 as FolderItem,
 inLoadRecords as Boolean,
 inDb1Key as String = "",
 inDb1StructureKey as String = "",
 inNewSegmentSize as integer = 0)

Parameter: Description:
inOldDb_Version1 location of database in 1.x format.
inNewDb_Version2 Location for new database of 2.0 format.
inLoadRecords If TRUE then records are copied to new database.
inDb1Key Encryption Key of DB1.
inDb1StructureKey Structure Encryption Key of DB1.
inNewSegmentSize Allows to change db.SegmentSize.

Convert database of 1.x format into database of 2.0 format. The old Database must be
closed before use of this method.

Note: This function do not change the old Database.

Example:

 db.Convert_1_2(oldDB, newDB, true)

V4RBRef-19

Valentina Module Initialisation Methods

Valentina Module

Utility Methods

SetExtensions(
 inDesc as String,
 inDat as String,
 inBlb as String,
 inInd as String)

Parameter: Description:
inDesc Extension for description file (.vdb)
inDat Extension for data file (.dat)
inBlb Extension for BLOB file (.blb)
inInd Extension for indexes file (.ind)

You can call this function before opening or creating a database to inform the Valentina ker-
nel which extensions it must use for database files. If you do not explicitly call this method,
then the standard four extensions are used by default. If you do use this method, you must
explicitly include all extensions that you want supported in your database application.

Note: The four standard file types of a Valentina database are explained in full in the Val-
entinaKernel.pdf.

The first example shows explicitly setting the standard extensions in a four file database.

The second example shows a database in which two files are created:
* the description database file using its standard extension;
* the index file with a custom file type of .tre instead of its standard extension, .ind.

Example(s):

 Valentina.SetExtensions("vdb", "dat", "blb", "ind")

 Valentina.SetExtensions("vdb", "", "", "tre")

V4RBRef-20

Valentina Module Utility Methods

Valentina Module

EscapeString(
 inStr as String,
 inForRegEx as Boolean = false) as String

Parameter: Description:
inStr The string to be escaped.
inForRegEx TRUE if you are preparing string for a REGEX search.

This utility function is used if you build a string out of an SQL query which may use the
single quote escape character. This allows you to escape a string (usually from user input)
before you concatenate that string into a SQL query.

If you set inForRegEx to TRUE, then the string is treated as a regular expression and be-
fore If the inForRegEx parameter is FALSE then only a single quote character is treated
by this function.

Example(s):

 res = Valentina.EscapeString("Valentina's (day)", 0)
 // res is "Valentina\'s (day)"

 res = Valentina.EscapeString("Valentina's day", 1)
 // res is "Valentina\'s \(day\)"

 query = "SELECT * FROM T WHERE f1 LIKE '" + s1 + "' OR f2 REGEX '" + s2 "'"

GetDatabaseVersion(inVdbFile as FolderItem) as Integer

Parameter: Description:
inVdbFile Path to the database file.

Returns the version of the database file format. It can work even with a closed database.

Example:

 dim fi as FolderItem
 dim vers as integer

 fi = GetFolderItem("MyDatbase.vdb")
 vers = Valentina.GetDatabaseVersion(fi)

GetCurrentFormatVersion() as Integer

Returns the current format version of database file.

Example:

 vers = Valentina.GetCurrentFormatVersion

V4RBRef-21

Valentina Module Utility Methods

Valentina Module

GetSchemaVersion(inVdbFile as FolderItem) as Integer

Parameter: Description:
inVdbFile Path to the database file.

Returns the version of database schema. It can work even with a closed database.

Example:

 dim fi as FolderItem
 dim SchemaVersion as integer

 fi = GetFolderItem("MyDatbase.vdb")
 SchemaVersion = Valentina.GetSchemaVersion(fi)

GetDatabaseMode(inVdbFile as FolderItem) as Integer

Parameter: Description:
inVdbFile Path to the database file.

Returns the database mode. It can work even with a closed database.

Example:

 dim fi as FolderItem
 dim dbMode as integer

 fi = GetFolderItem("MyDatbase.vdb")
 dbMode = Valentina.GetDatabaseMode(fi)

GetIsStructureEncrypted(inVdbFile as FolderItem) as Boolean

Parameter: Description:
inVdbFile Path to the database file.

Returns TRUE if database structure is encrypted. It can work even with a closed data-
base.

Example:

 dim fi as FolderItem
 dim isEncrypted as integer

 fi = GetFolderItem("MyDatbase.vdb")
 isEncrypted = Valentina.GetStructureEncrypted(fi)

V4RBRef-22

Valentina Module Utility Methods

Valentina Module

LocateBonjourService(inType As String, inDomain As String) as VStringArray

Parameter: Description:
inType A service name.
inDomain A domain name. Pass here empty string currently.

This method allow you discover a specified service using Bonjour on the network.
When you call this method you need specify the name of Bonjour service you want to find.
For Valentina Server this is “_valentina._tcp”. As result you get an array of strings that con-
tain Bonjour service description. If not found any such service then a nil is returned. You
can show strings of this array in GUI, so user can choose what service he want to connect.
To establish connection using bonjour string, simply pass it to VConnection() constructor
in the place of inHost parameter.

Example:

 Dim resArray As VStringArray
 Dim count, i As Integer
 Dim item As String

 resArray = Valentina.LocateBonjourService(“_valentina._tcp”, “”)

 if resArray <> nil then
 count = resArray.count

 for i = 1 to count
 item = resArray.GetItemAt(i)
 ' Do something with item
 next
 end if

V4RBRef-23

Valentina Module Utility Methods

Valentina Module

The Class Hierarchy

Because of performance considerations, Valentina for REALbasic is implemented as a set
of classes, bypassing REALbasic's internal database plugin API.

However, you may also use REALbasic's database plugin API. REALbasic's database
API allows developers to leverage the internal methods and functions of the REALbasic
evironment, just like REAL Software's own database plugins. Using the REALbasic data-
base API requires the Pro version of REALbasic. In order to disable using this, you must
put a file into the REALbasic plugin folder with the name "DisableRBDB". This file can be
completely blank/
The following are the Valentina for REALbasic classes. To learn more about how classes
work in REALbasic, consult the REALbasic Developer's Guide.
Important: You should not mix using the Valentina API and REALbasic database API method
to access a Valentina dabase in your application.

class VDataBase
class VTable
class VLink
 class VLink2
 class VBinaryLink
class VField
 class VBoolean
 class VByte
 class VShort
 class VUShort
 class VMedium
 class VUMedium
 class VLong
 class VULong
 class VFloat
 class VDouble
 class VDate
 class VTime
 class VDateTime
 class VString
 class VVarChar
 class VFixedBinary
 class VVarBinary
 class VBLOB
 class VText
 class VPicture
 class VObjectPtr
class VCursor
class VSet
 class VArraySet
 class BitSet
class VSetIterator

Note: The class VField is an abstract class. You cannot create it by using the operator
NEW. Only its subclasses can be created and used explicitly.

V4RBRef-24

The Class Hierarchy

The Class Hierarchy

Class VDataBase
Properties

CenturyBound as Integer // default 20.
Creator as String // Mac creator signature

CollationAttribute(inColAttribute as EVColAttribute) as EVColAttributeValue
CollationAttribute(inColAttribute as EVColAttribute, inColAttributeValue as EVColAttributeValue)

DateFormat as EVDateFormat // specifies the format of date.
DateSep as String // separator for date, e.g. ‘/’
ErrNumber as Integer (r/o) // Number of the last error, 0 if OK. [DEPRECATED]
ErrString as String(r/o) // String description of error. [DEPRECATED]
IndexCount as Integer (r/o)
IsEncrypted as Boolean (r/o) // TRUE if the database is encrypted.
IsOpen as Boolean (r/o)
IsReadOnly as Boolean (r/o)
IsRemote as Boolean (r/o)
LastInsertedRecID as Integer (r/o)
LinkCount as Integer (r/o)
LocaleName as String
Mode as EVDbMode
Name as String (r/o)
Path as String (r/o)
SchemaVersion as Integer // Version of db Schema
SegmentSize as Integer
StorageEncoding as String
TableCount as Integer (r/o)
TimeSep as String // separator for time, e.g. ‘:’

// for CLIENT only:
ResponseTimeout as Integer // default 60 seconds.

ConnectionVariable(inConnVariable as EVConnectionVariable) as EVConnectionVariableValue
ConnectionVariable(inConnVariable as EVConnectionVariable, inValue as EVConnectionVariableValue)

Constructor

VDatabase(inStorageType as EVStorageType = kDefault)

VDatabase(
 inConnection As VConnection)

V4RBRef-25

Класс VDataBase

Класс VDataBase

Disk Methods

Create(
 inLocation as FolderItem,
 inMode as EVDbMode = kDsc_Dat_Blb_Ind,
 inSegmentSize as integer = 32768,
 inNativeOS as EVOs = kOsDefault)

Open(inLocation as FolderItem)
Close()
ThrowOut()
Flush()
SetMacTypes(
 inDescType as String,
 inDatType as String,
 inBlbType as String,
 inIndType as String)

Clone(inTargetDb as FolderItem, inLoadRecords as Boolean = true, inDoLog as Boolean = false)
Clone(inTargetDb as VDatabase, inLoadRecords as Boolean = true, inDoLog as Boolean = false)

Structura methods

CreateTable(
 inName as String,
 inTableKind as EVTableKind = kTblPermanent,
 inStorageType as EVStorageType = kDefault) as VTable

DropTable(inTable as VTable)

CreateForeignKeyLink(
 inName as String,
 inKeyField as VField,
 inPtrField as VField,
 inOnDelete as EVOnDelete = kSetNull,
 inOnUpdate as EVOnUpdate = kCascade,
 inTemporary as Boolean = FALSE) as VLink

CreateBinaryLink(
 inName as String,
 inLeftTable as VTable,
 inRightTable as VTable,
 inLeftPower as EVLinkType = kOne,
 inRightPower as EVLinkType = Many,
 inOnDelete as EVOnDelete = kSetNull,
 inStorageType as EVStorageType = kDefault,
 inTemporary as Boolean = false) as VBinaryLink

DropLink(inLink as VLink)

V4RBRef-26

Класс VDataBase

Класс VDataBase

Table methods

Table(inIndex as Integer) as VTable
Table(inName as String) as VTable

Link methods

Link(inIndex as Integer) as VLink
Link(inName as String) as VLink

IndexStyle methods

CreateIndexStyle(inName as String) as VIndexStyle
DropIndexStyle(inStyle as VIndexStyle)
IndexStyle(inName as String) as VIndexStyle

SQL methods

SqlExecute(
 inQuery as String,
 inBinds() as String = nil) as Integer

SqlSelect(
 inQuery as String,
 inCursorLocation as EVCursorLocation = kClientSide,
 inLockType as EVLockType = kReadOnly,
 inCursorDirection as EVCursorDirection = kForwardOnly
 inBinds() as String = nil) as VCursor

V4RBRef-27

Класс VDataBase

Класс VDataBase

Encryption method

ChangeEncryptionKey(
 inOldKey as String
 inNewKey as String
 inForData as Integer = EVDataKind.kRecordsOnly)

Encrypt(
 inKey as String,
 inForData as Integer = EVDataKind.kRecordsOnly)

Decrypt(
 inKey as String,
 inForData as Integer = EVDataKind.kRecordsOnly)

RequiresEncryptionKey()

UseEncryptionKey(
 inKey as String,
 inForData as Integer = EVDataKind.kRecordsOnly)

Dump methods

Dump(
 inDumpFile as FolderItem,
 inDumpType as Integer,
 inDumpData as EVDataKind = kStructureAndRecords,
 inFormatDump as Boolean = false,
 inEncoding as String = UTF-16)

LoadDump(
 inDumpFile as FolderItem,
 inNewDb as FolderItem,
 inDumpType as Integer,
 inEncoding as String = UTF-16)

Utility methods

Diagnose(
 inVerboseLevel as EVVerboseLevel = kNone,
 inFile as FolderItem = nil) as Boolean

V4RBRef-28

Класс VDataBase

Класс VDataBase

Class Description

This class manages a database. Valentina can have multiple open databases.
Each database has an unique (case insensitive) name. Each database must have at least
one table.

V4RBRef-29

Class VDataBase Class Description

Class VDataBase

Properties Description

CenturyBound as Integer

This property specifies how Valentina automatically corrects dates that contains a 2 digit
year value, e.g.

 "20/04/89" -> "20/04/1989"
 "20/04/04" -> "20/04/2004"
The default is 20.

Example:

 cntb = db.CenturyBound

CollationAttribute(
 inColAttribute as EVColAttribute) as EVColAttributeValue

CollationAttribute(
 inColAttribute as EVColAttribute,
 inColAttributeValue as EVColAttributeValue)

Set/Get the value of the specified collation attribute for this database.

Example:

 dim v as integer

 v = database.CollationAttribute(EVColAttribute.kStrength)

 database.CollationAttribute(EVColAttribute.kStrength) =
 EVColAttributeValue.kPrimary

V4RBRef-30

Class VDataBase Properties

Class VDataBase

ConnectionVariable(
 inConnVariableName as EVConnectionVariable) as Integer

ConnectionVariable(
 inConnVariableName as EVConnectionVariable,
 inConnVariableNameValue as EVConnectionVariableValue)

Get/Set the value of the connection variable by its name.

Example:

 dim i as integer

 i = database.ConnectionVariable(EVConnectionVariable.kFilesTransferMode)

 database.ConnectionVariable(EVConnectionVariable.kFilesTransferMode) =
 EVConnectionVariableValue.kNetwork

Creator as String

With MacOS applications, you can specify the creator’s signature for database files. This
allows you to design an icon suite for your application.

Example:

 creator = db.Creator

V4RBRef-31

Class VDataBase Properties

Class VDataBase

DateFormat as EVDateFormat

Specify the date format for strings that contains date values. You can set format to the one
of the following values: kYMD(Year, Month, Day), kDMY(Day, Month, Year), kMDY(Month,
Day, Year).

Example:

 dtf = db.DateFormat

DateSep as String

The character that is used as a separator in the date string. The default is "/".

Example:

 dts = db.DateSep

ErrNumber as Integer [DEPRECATED]

You cam examine this property to see if the last operation was successful. Since this is a
property of the database, each open database has its own “last error” number.

There are 2 kind of errors: OS-relative errors and Valentina-specific errors. OS-based errors
are negative numbers. You can find their description in your OS documentation. Valentina
specific errors are positive numbers.

Example:

 errnumber = db.ErrNumber

ErrString as String [DEPRECATED]

Returns the string that describes the last error.

Example:

 errstr = db.ErrString

IndexCount as Integer (r\o)

Returns the count of indexes in all tables of this database.

Example:

 count = db.IndexCount

V4RBRef-32

Class VDataBase Properties

Class VDataBase

IsEncrypted as Boolean (r\o)

Returns TRUE if this database is encrypted.

Example:

 encrypted = db.isEncrypted

IsReadOnly as Boolean (r/o)

Returns TRUE if this database is read only, i.e. it is located on the locked volume or files
of databases are marked as read only.

Example:

 res = db.IsReadOnly

IsRemote as Boolean (r/o)

Returns TRUE if this database is remote.

Example:

 res = db.IsRemote

IsOpen as Boolean (r\o)

Returns TRUE if this database is open now.

Example:

 res = db.IsOpen

V4RBRef-33

Class VDataBase Properties

Class VDataBase

LastInsertedRecID as integer (r/o)

Returns: integer

Returns the last inserted RecID in the database. Returns 0 as invalid RecID, for example
if there was no any INSERTs.

This function is useful mainly if you execute
 db.SqlExecute("INSERT INTO T ...")

because it allows you to get RecID of just inserted record. You should call this function
right after SqlExecute() call. Actually any other INSERT into this database will change the
result of this function.

Function VTable.AddRecord() also affects the result of this function.

Note, that if you use this function with Valentina Server then its result does not depend on
work of other users.

Example:

 recid = db.LastInsertedRecID

LinkCount as Integer (r\o)

Returns the count of links in the database. This property is indirectly changed when you
create/drop a link, or when you establish a FOREIGN KEY constraint, or when you create
an ObjectPtr field.

Example:

 count = db.LinkCount

LocaleName as String

Defines the locale name for this database. Tables and fields of this database will inherit
this parameter.

Example:

 localeName = db.LocaleName
 db.LocaleName = "en_US"

Mode as EVDbMode (r\o)

Returns the mode of this database. Using this you can define how many files hold the
information in the database.

Example:

 mode = db.Mode

V4RBRef-34

Class VDataBase Properties

Class VDataBase

Name as String (r\o)

The name of database.

Example:

 name = db.Name

Path as String (r\o)

The full path to this database.

Example:

 path = db.Path

SchemaVersion as Integer

The of version number of a database schema. Initial value is 1. It can be used if you want
to change a database structure in the new version of your application.

Example:

 ver = db.SchemaVersion

SegmentSize as Integer (r\o)

Returns the segment size (in bytes) of a database.

Example:

 seg = db.SegmentSize

V4RBRef-35

Class VDataBase Properties

Class VDataBase

StorageEncoding as String

Defines how strings will be stored on disk. By default it is UTF-16. You can change it to
any other encoding.

IMPORTANT: you can assign an encoding to a VDatabase object only before calling the
Vdatabase.Create() function. You cannot change the encoding of existing db files using
this property.

Example:

 encoding = db.StorageEncoding

TableCount as Integer (r\o)

Returns the count of custom tables in the database (i.e. it does not count the system tables).
This property is indirectly changed when you create/drop a Table.

Example:

 count = db.TableCount

TimeSep as String

The character that is used as a separator for time values. The default is ":".

Example:

 tms = db.TimeSep

ResponseTimeOut as Integer

This property affects only Valentina Client. It is specifies the time (in seconds) which the
client will wait for a response from the server on a query. If during this time the server does
not respond then the client disconnects.

By default this property is 60 seconds. You may wish set this value larger if you have some
complex query and you know that the server will take a long time to resolve it.

Example:

 db.ResponseTimeOut = 100

V4RBRef-36

Class VDataBase Properties

Class VDataBase

VDatabase: Local vs Remote Creation
The VDatabase class constructor has two forms. The first is for a LOCAL database and
the second for a CLIENT database.

VDatabase(inStorageType as EVStorageType = kDefault)

Parameter Description
inStorageType Storage type for this database

You should use the first form, if you create a database object that will work with a local
database.

The parameter inStorageType specifies if the database will be created on the DISK or in
RAM. By default the database is disk-based.

Example:

 db = new VDatabase

 db = new VDatabase(EVStorageType.kRAM)

VDatabase(
 inConnection As VConnection)

Parameter Description
inConnection VConnection object.

You need the second form to create a VDatabase object to access a remote database.
It does not establish a connection, but just stores parameters that will be used later. The
connection is established on a call of either Open() or Create().

Example:

 remote_db = new VDatabase(inConnection)

V4RBRef-37

Class VDataBase Constructors

Class VDataBase

Disk Methods

Create(
 inLocation as FolderItem,
 inMode as EVDbMode = kDsc_Dat_Blb_Ind,
 inSegmentSize as Integer = 32768,
 inNativeOS as EVOs = kOsDefault)

Parameter: Description:
inLocation The path to the database on the disk.
inMode How many files for databases will be used, range 1-8; default 4.
inSegmentSize The size of one cluster in the database file; default 32KB.
inNativeOS The byte order for the database.

Creates a new, empty database on disk.

Note: After creation, the database is already open.

As the Mode parameter you can specify one of the following:
 kDscDatBlbInd // (description,data,BLOB,indexes)
 kDsc_DatBlbInd // description + (data,BLOB,indexes)
 kDsc_DatBlb_Ind // description + (data,BLOB) + indexes
 kDsc_Dat_Blb_Ind // description + data + BLOB + indexes
 kDscDatBlb_Ind // (description,data,BLOB) + indexes
 kDscDat_Blb_Ind // (description,data) + BLOB + indexes
 kDscDatInd_Blb // (description,data,indexes) + BLOB
 kDsc_DatInd_Blb // description + (data,indexes) + BLOB

Example:

 db.Create(file, kDscDatBlb_Ind, 32 * 1024)

Example:

 // For a remote database, you need to specify only
 // the name of the database that is registered with Valentina Server.

 f = GetFolderItem("My Database1")
 remote_db.Create(file, kDscDatBlb_Ind, 32 * 1024)

V4RBRef-38

Class VDataBase Disk Methods

Class VDataBase

Open(inLocation as FolderItem)

Parameter: Description:
inLocation The path to the database on the disk.

Opens an existing database at the specified location.

Example:

 db.Open(file)

Example:

 // For a remote database, you need specify just
 // the name of the database that is registered with Valentina Server.

 f = GetFolderItem("My Database1")
 remote_db.Open(file)

Close()

Closes the database.

Example:

 db.Open()

 db.Close()

ThrowOut()

Deletes all database files from disk. This database must be closed.

Example:

 db.Close()
 db.ThrowOut()

Flush()

Flushes all unsaved information of this database from cache to disk.

Example:

 db.Flush()

V4RBRef-39

Class VDataBase Disk Methods

Class VDataBase

IsRemote (r/o)

Each database (never mind - local or remote) has been registered to the single array of
databases. So we should be able to check it.

Example:

 db.IsRemote

SetMacTypes(
 inDescType as String,
 inDatType as String,
 inBlbType as String,
 inIndType as String)

Parameter: Description:
inDescType Mac Type of the ".vdb" file of the database.
inDatType Mac Type of the ".dat" file of the database.
inBlbType Mac Type of the ".blb" file of the database.
inIndType Mac Type of the ".ind" file of the database.

This function allows you to assign own file types for database files. This is required on
MacOS to correctly show custom icons.

Example:

 db.SetMacTypes("Mdsc", "Mdat", "Mblb", "Mind")

V4RBRef-40

Class VDataBase Disk Methods

Class VDataBase

Clone(
 inTargetDb as FolderItem,
 inLoadRecords as Boolean = true,
 inDoLog as Boolean = false)

Parameter: Description:
inTargetDb The Path for a new database.
inLoadRecords If TRUE then records are copied into the cloned database.
inDoLog If TRUE then this method produce log file.

This function creates a new database which is a logical clone of this database. We say logi-
cal because physically it is not identical. For example the space used with deleted records
will not be copied. This means that the cloned database can be smaller of original.

On default records also are copied into the cloned database. You can specify inLoadRe-
cords to be FALSE to clone only the Database Structure. See details in the ValentinaKernel.
pdf.

If Parameter inDoLog is TRUE then it produces a log file in the folder of database. This log
file will contains information only about corrupted fields/records if any. This allows to user
explicitly see where he can lost changed during cloning of database.

Example:

 newDbLocation = GetOpenFolderItem()
 db.Clone(newDbLocation)

Clone(
 inTargetDb as VDatabase,
 inLoadRecords as Boolean = true,
 inDoLog as Boolean = false)

The same as above except that first parameter is not disc location, but already existent
VDatabase object.

This form allows you to create a new empty VDatabase and specify some parameters of
VDatabase, e.g. Mode, SegmentSize. Later the Clone() method will copy rest of the struc-
ture and records into this database.

Example:

 newDbLocation = GetOpenFolderItem()

 dbCloned = new VDatabase
 dbCloned.Create(newDbLocation, kDscDatBlb_Ind, 8 * 1024)

 db.Clone(dbCloned)

V4RBRef-41

Class VDataBase Disk Methods

Class VDataBase

Database Structure Methods

CreateTable(
 inName as String,
 inTableKind as EVTableKind = kTblPermanent,
 inStorageType as EVStorageType = kDefault) as VTable

Parameter: Description:
inName The Name of a new Table.
inTableKind The kind of Table
inStorageType Storage type for this database

Creates a new empty Table in the database.

The parameter inTableKind allows you to choose between permanent and temporary
tables.

The parameter inStorageType allows for the creation of Tables in RAM.

Note: This only applies to a DISK-based database. It is obvious that for a RAM-based
database that you cannot create a disk-based table.

Note: You need to add columns to a new table using the VTable.CreateField() method.

Example:

 dim tbl as VTable

 tbl = db.CreateTable("Person")

DropTable(inTable as VTable)

Parameter: Description:
inTable The reference of Table to delete.

Removes the specified Table from the database. This operation is undoable.

Example:

 db.DropTable(tbl)

V4RBRef-42

Class VDataBase Database Structure Methods

Class VDataBase

CreateBinaryLink(
 inName as String,
 inLeftTable as VTable,
 inRightTable as VTable,
 inLeftPower as EVLinkType = kOne,
 inRightPower as EVLinkType = kMany,
 inOnDelete as EVOnDelete = kSetNull,
 inStorageType as EVStorageType = kDefault
 inTemporary as Boolean = false) as VBinaryLink

Parameter: Description:
inName The name of the link.
inLeftTable Pointer to the Left Table.
inRightTable Pointer to the Right Table.
inLeftPower Link type for the Left Table.
inRightPower Link type for the Right Table.
inOnDelete The behavior on deletion of record-owner.
inStorageType Storage type of the link.
inTemporary TRUE if the link is tempоrary.

Creates a new Binary Link between 2 tables of this database.

To specify a link you need to define the following:

• A name for the link, unique in the scope of the database.

• Pointers to 2 tables. One table is named Left, the other is named Right.

• The type of link, i.e. if it is 1 : 1 or 1 : M or M : M.

• The behavior of the link on deletion of a record in the Table-Owner.
- In the case of a 1 : M link, the ONE table is the owner table
- In the other cases (1:1 and M:M) the developer can assign which table is to be the
owner.

• The storage type for the link. Can be Disk-based or RAM-based.

A BinaryLink creates files on disk to keep information about linked records. This is why we
need to specify StorageType.

You can specify the same table in the parameters inLeftTable and inRightTable. In this case
you get a recursive link (or self-pointer).

Example:

 linkPersonPhone = db.CreateBinaryLink(
 "PersonPhone", tblPerson, tblPhone,
 EVLinkType.kMany, EVLinkType.kMany)

V4RBRef-43

Class VDataBase Database Structure Methods

Class VDataBase

CreateForeignKeyLink(
 inName as String,
 inKeyField as VField,
 inPtrField as VField,
 inOnDelete as EVOnDelete = kSetNull,
 inOnUpdate as EVOnUpdate = kCascade,
 inTemporary as Boolean = false) as VLink

Parameter: Description:
inName The name of link.
inKeyField The PRIMARY KEY field of ONE Table.
inPtrField The PTR field in the MANY Table.
inOnDelete The behavior on deletion of record-owner.
inOnUpdate The behavior on update of record-owner.
inTemporary TRUE if link is temprary.

Creates a Link between 2 tables of this database using the FOREIGN KEY abstraction of
the relational model. This link does not create on disk any new structures. It just establishes
logical links between records using their values in the KEY and PTR fields. This function is
100% the analog of the FOREIGN KEY constraint in SQL of a RDBMS. Valentina allows a
way to establish a relational link without the use of SQL.

To specify a foreign key link you need to define the following:
• A name for the link, unique in the scope of the database.
• The KEY field of the Parent table (ONE table).
• The PTR field of the Child table (MANY table).
• The behavior of the link on deletion of a record in the Parent Table.
• The behavior of the link on update of a KEY field value in the Parent Table.

Example:

 linkPersonPhone = db.CreateForeignKeyLink(
 "PersonPhone", tblPerson.fldID, tblPhone.PersonPtr)

DropLink(inLink as VLink)

Parameter: Description:
inLink The reference of Link to delete.

Removes the specified Link from the database. This operation is undoable.

Example:

 db.DropLink(lnk)

V4RBRef-44

Class VDataBase Database Structure Methods

Class VDataBase

Table Methods

Table(inIndex as Integer) as VTable

Parameter: Description:
inIndex The index of a Table in a database, start from 1.

Returns a Table by an numeric index.

Example:

 Table = db.Table(i)

Table(inName as String) as VTable

Parameter: Description:
inName The Name of a Table.

Returns a Table by name.

Note: The parameter inName is case insensitive.

Example:

 Table = db.Table("Person")

V4RBRef-45

Class VDataBase Table Methods

Class VDataBase

Link Methods

Link(inIndex as Integer) as VLink

Parameter: Description:
inIndex The index of a Link in a database, start from 1.

Returns a Link based on numeric index.

Example:

 Link = db.Link(i)

Link(inName as String) as VLink

Parameter: Description:
inName The Name of a Link.

Returns a Link by name.

Note: The parameter inName is case insensitive.

Example:

 Link = db.Link("Person")

V4RBRef-46

Class VDataBase Link Methods

Class VDataBase

SQL Methods

SqlSelect(
 inQuery as String,
 inCursorLocation as EVCursorLocation = kClientSide,
 inLockType as EVLockType = kReadOnly,
 inCursorDirection as EVCursorDirection = kForwardOnly
 inBinds() as String = nil) As VCursor

Parameter: Description:
inQuery The SQL string of a query.
inCursorLocation The location of cusror.
inLockType The lock type for records of a cursor.
inCursorDirection The direction of a cursor.
inBinds The array of binded parameters

Valentina uses SQL for database searches. This is documented separately in Valentin-
aSQL.pdf.

SqlSelect() method gets an SQL query as the string parameter, resolves it, then returns
the resulting table as a cursor of type VCursor.

Note: When finished with a cursor, you must assign it the value nil to destroy it and free
memory.

The optional parameters inCursorLocation, inLockType, inCursorDirection allow you to
control the behavior of the cursor. See the documentation on Valentina Kernel.and VServer
for more details.

You can set the following parameters with these values:

inCursorLocation: kClientSide = 1, kServerSide = 2, kServerSideBulk = 3
inLockType: kNoLocks = 1, kReadOnly = 2, kReadWrite = 3
inCursorDirection: kForwardOnly = 1, kRandom = 2

By default these parameters get the following values:
 kClientSide, kReadOnly, kForwardOnly

For the SELECT command you can define an array of binded parameters. This is an array
of strings for V4RB. See ValentinaSQL.pdf for details.

V4RBRef-47

Class VDataBase SQL Methods

Class VDataBase

Example:

 dim curs as VCursor
 curs = db.SqlSelect("SELECT * FROM T ")

Example:

 curs = db.SqlSelect("SELECT * FROM T ",
 EVCursorLocation.kServerSide,
 EVLockType.kReadWrite,
 EVCursorDirection.kRandom)

Example:

 curs = db.SqlSelect("SELECT * FROM T WHERE f1 = :1, f2 > :2",
 EVCursorLocation.kServerSide,
 EVLockType.kReadWrite,
 EVCursorDirection.kRandom,
 Array("john", "25"))

V4RBRef-48

Class VDataBase SQL Methods

Class VDataBase

SqlExecute(
 inQuery as String,
 inBinds() as String) as Integer

Parameter: Description:
inQuery The SQL string of a query.
inBinds The array of binded parameters

You can use this function to execute any SQL command supported by Valentina except
for a command that returns a cursor as a result (e.g. SELECT). This is fully covered in the
documentation on ValentinaSQL.

This returns the number of affect rows.

For commands that have an EXPR (expression) clause in the syntax, you can define an
array of binded parameters. This is an array of strings for V4RB. See ValentinaSQL.pdf
for details.

Note: such commands usually are INSERT, DELETE, UPDATE.

Example:

 recCount = db.SQLExecute("UPDATE person SET name = 'john'
 WHERE name = 'jehn'")

Example:

 dim Binds(-1) as String

 Binds.append 'john'
 Binds.append 'jehn'

 recCount = db.SQLExecute(
 "UPDATE person SET name = :1 WHERE name = :2", Binds)

Example:

 // the same as above but more concise
 recCount = db.SQLExecute(
 "UPDATE person SET name = :1 WHERE name = :2",
 Array("john", "jehn"))

V4RBRef-49

Class VDataBase SQL Methods

Class VDataBase

IndexStyle Methods

CreateIndexStyle(inName as String) as VIndexStyle

Parameter: Description:
inName The name of an index style.

Creates a new Index Style in the database.

Example:

 dim indStyle1 as VIndexStyle
 IndexStyle1 = db.CreateIndexStyle("myStyle")

DropIndexStyle(inStyle as VIndexStyle)

Parameter: Description:
inStyle The index style to be deleted.

Deletes the specified index style from the database.

Example:

 db.DropIndexStyle(IndexStyle1)

IndexStyle(inName as String) as VIndexStyle

Parameter: Description:
inName The Name of a IndexStyle.

Returns an IndexStyle by name.

Note: The parameter Name is case insensitive.

Example:

 IndexStyle1 = db.IndexStyle("IndexStyle1")

V4RBRef-50

Class VDataBase IndexStyle Methods

Class VDataBase

Encryption Methods

The VDataBase class has encryption methods that allows you to encrypt data of database
as well as the structure of a database.

Encryption of the structure allows you to deny opening of your database files using any
other programs based on the Valentina database.

Usually you will use one of the encryption methods of the database, though it is posible to
merge both of them.

Encrypt(
 inKey as String
 inForData as EVDataKind = kRecordsOnly)

Parameter: Description:
inKey The key of encryption.
inForData Specifies what data are encrypted.

Allows you to encrypt the database.

Using the inForData parameter you can specify what data must be encrypted.
inForData may accept following values:

kRecordsOnly - records of the database are encrypted.
kStructureOnly - the structure of the database (.vdb file) is encrypted.
kRecordsandStructure - records and the structure are encrypted with the same pass-
word.

When the function completes the work, you get an encrypted database on the disc. To
future work with this database you need to assign the encryption key using the UseEn-
cryptionKey() function.

Working time of the function is directly as the size of the database.

ATTENTION: If the key is lost there is no posibility to decrypt data.

Note:

• The database must be open.
• You can encrypt either an empty database or the database that already has records.
• All new tables/fields added in the database will be encrypted the same way.
• All new records added in the database will be encrypted.

Example:

 db.Open()
 db.Encrypt ("key12345")

Example:

 db.Open()
 db.Encrypt ("key12345", kStructureOnly)

V4RBRef-51

Class VDataBase Encryption Methods

Class VDataBase

Decrypt(
 inKey as String
 inForData as EVDataKind = kRecordsOnly)

Parameter: Description:
inKey The encription key.
inForData Specifies what data are encrypted.

Allows to decrypt the database.

If the database already has records then they are encrypted on the disc. When the function
completes the work, you get the decrypted database which does not need the encryption
key for access.

Working time of this function is directly as the size of the database.

Example:

 db.Open()
 db.Decrypt ("key12345")

Example:

 db.Open()
 db.Decrypt ("key12345", kStructureOnly)

ChangeEncryptionKey(
 inOldKey as String
 inNewKey as String
 inForData as EVDataKind = kRecordsOnly)

Parameter: Description:
inOldKey Old encryption key.
inNewKey New encryption key.
inForData Specifies what data are encrypted.

Allows you to change the encryption key for the database.

Working time of this function is directly as the size of the database.

Example:

 res = db.ChangeEncryptionKey("key12345", "key54321")

Example:

 res = db.ChangeEncryptionKey("key12345", "key54321", kStructureOnly)

V4RBRef-52

Class VDataBase Encryption Methods

Class VDataBase

RequiresEncryptionKey() as boolean

Returns True if the database is encrypted, otherwise returns False.

This function can be used with programs such as Valentina Studio to check wether it is
necessary to show an user the dialog for password entry.

Example:

 res = db.RequiresEncryptionKey()

UseEncryptionKey(
 inKey as String
 inForData as EVDataKind = kRecordsOnly)

Parameter: Description:
inKey The encryption key.
inForData Specifies what data are encrypted.

Informs the database what key must be used for data encryption.

Returns an error "wrong key", if you specify a wrong key of encryption.

Example:

 db.UseEncryptionKey("key12345")
 db.Open()

Examp;e:

 db.UseEncryptionKey("key12345", kStructureOnly)
 db.Open()

V4RBRef-53

Class VDataBase Encryption Methods

Class VDataBase

Dump Methods
Dump(
 inDumpFile as FolderItem,
 inDumpType as Integer,
 inDumpData as EVDataKind = kStructureAndRecords,
 inFormatDump as Boolean = false,
 inEncoding = "UTF-16")

Parameter: Description:
inDumpFile The location of dump file.
inDumpType The Type of dump.
inDumpData Specify which information to dump.
inFormatDump If TRUE then formats the dump file for human read.
inEncoding Encoding of dump file.

Dumps all possible information about a database into a dump file.

Tip: You can use this file to recreate a database into a different location.

DumpType can be one of the following:
kSQL dump. A Text file that contains a set of INSERT commands.
kXML dump. A Text file that contains the database information in XML format.

XML dump is very useful as it allows you to safely dump a database with ObjectPtr fields.
On loading this information into a new database, Valentina will automatically correct values
of ObjectPtr fields in related tables. You can also use XML dump and load to compact your
database.

Example:

 dim db as VDatabase
 ...
 db.Dump(fiXML, EVDumpType.kXML)

V4RBRef-54

Class VDataBase Dump Methods

Class VDataBase

LoadDump(
 inDumpFile as FolderItem,
 inNewDb as FolderItem,
 inDumpType as Integer,
 inEncoding = "UTF-16")

Parameter: Description:
inDumpFile The location of a dump file.
inNewDb The location for a new database.
inDumpType Type of a dump.
inEncoding Encoding of dump file.

Loads the dump file into a new fresh database. This function is similar to the db.Create()
function.

Note: You must use a variable of type VDatabase, but not your subclass of VDatabase!
After the loading is complete, you will need to close the VDatabase and open it again as
your subclass.

Example:

 dim db as VDatabase
 ...
 db.LoadDump(fiXML,fiNewDb, EVDumpType.kXML)

V4RBRef-55

Class VDataBase Dump Methods

Class VDataBase

Class VDataBase

Class VDataBase

Utility Method

Utility methods

Diagnose(
 inVerboseLevel as EVVerboseLevel = kNone
 inFile as FolderItem = nil) as Boolean

Parameter: Description:
inVerboseLevel Specify how many information to write into diagnose.
inFile Location on disk of diagnose file.

Execute diagnose of an open database. Returns TRUE if the database is fine.

To produce a diagnose file you can specify its location on the disk.

Parameter inVerboseLevel can accept the following values:

 kNone = 0
 kLow = 1
 kNormal = 2
 kHigh = 3
 kVeryHigh = 4

Example:

 res = db.Diagnose(kVeryHigh)

V4RBRef-56

Class VTable
Properties

BOF as Boolean
EOF as Boolean
CollationAttribute(inColAttribute as EVColAttribute)
 as EVColAttributeValue
DataBase as VDataBase (r/o) // Database of this BaseObject.
FieldCount as Integer (r/o) // (r/o) number of fields in this BaseObject
ID as Integer (r/o)
Name as String
IsEncrypted as Boolean (r/o)
LinkCount as Integer (r/o)
LocaleName as String
PhysicalRecordCount as Integer (r/o)
RecID as Integer
RecordCount as Integer (r/o) // (r/o) number of logical records in this BaseObject.
StorageEncoding as String

Field Methods

Field(inIndex as Integer) as VField
Field(inName as String) as VField

Link Methods

Link(inIndex as Integer) as VLink
Link(inName as String) as VLink

Record Methods

SetBlank(inAccess as EvValueAccess = forUpdate) // Clears a memory buffer of a BaseObject,
 // set nullable fields to NULL
AddRecord() as Integer // Adds a new record with the current value of fields
DeleteRecord() // Deletes the current record
DeleteAllRecords(inSet as VSet = nil) // Makes table empty, very fast.
UpdateRecord() // Updates an existing record with new values
UpdateAllRecords(inSet as VSet = nil)

Cach Methods

Flush() // Saves information of this BaseObject on disk only.

Navigation Methods

FirstRecord() as Boolean
LastRecord() as Boolean
PrevRecord() as Boolean
NextRecord() as Boolean

RecordExists(inRecID as Integer) as Boolean

V4RBRef-57

Class VTable

Class VTable

// Set of handy CreateXXXField()

CreateBooleanField(inName as String, inFlags as EVFlag = fNone, inMethod as String = ”") as VBoolean

CreateByteField(inName as String, inFlags as EVFlag = fNone, inMethod as String = ”") as VByte

CreateShortField(inName as String, inFlags as EVFlag = fNone, inMethod as String = ”") as VShort

CreateUShortField(inName as String, inFlags as EVFlag = fNone, inMethod as String = ”") as VUShort

CreateMediumField(inName as String, inFlags as EVFlag = fNone, inMethod as String = ”") as VMedium

CreateUMediumField(inName as String, inFlags as EVFlag = fNone, inMethod as String = ”") as VUMedium

CreateLongField(inName as String, inFlags as EVFlag = fNone, inMethod as String = ”") as VLong

CreateULongField(inName as String, inFlags as EVFlag = fNone, inMethod as String = ”") as VULong

CreateLLongField(inName as String, inFlags as EVFlag = fNone, inMethod as String = ”") as VLLong

CreateULLongField(inName as String, inFlags as EVFlag = fNone, inMethod as String = ”") as VULLong

CreateFloatField(inName as String, inFlags as EVFlag = fNone, inMethod as String = ”") as VFloat

CreateDoubleField(inName as String, inFlags as EVFlag = fNone, inMethod as String = ”") as VDouble

CreateDateField(inName as String, inFlags as EVFlag = fNone, inMethod as String = ”") as VDate

CreateTimeField(inName as String, inFlags as EVFlag = fNone, inMethod as String = ”") as VTime

CreateDateTimeField(inName as String, inFlags as EVFlag = fNone, inMethod as String = ”") as VDateTime

V4RBRef-58

Class VTable

Class VTable

CreateStringField(
 inName as String,
 inMaxLength as Integer,
 inFlags as EVFlag = fNone, inMethod as String = ”") as VString

CreateVarCharField(
 inName as String,
 inMaxLength as Integer,
 inFlags as EVFlag = fNone,
 inMethod as String = ”") as VarChar

CreateFixedBinaryField(
 inName as String, inMaxLength as Integer) as VFixedBinary

CreateVarBinaryField(
 inName as String, inMaxLength as Integer) as VVarBinary

CreateBLOBField(
 inName as String, inSegmentSize as Integer) as VBLOB

CreateTextField(
 inName as String,
 inSegmentSize as Integer,
 inFlags as EVFlag = fNone,
 inMethod as String = ”") as VText

CreatePictureField(
 inName as String, inSegmentSize as Integer) as VPicture

CreateObjectPtrField(
 inName as String,
 inTarget as VTable,
 inOnDeletion as Integer = kCascade,
 inFlags as EVFlag = fNone,
 inLinkName as String = "") as VObjectPtr

V4RBRef-59

Class VTable

Class VTable

Structure Methods

DropField(inFld as VField)

ChangeType(
 inFld as VField,
 inNewType as EVFieldType,
 inParam1 as Integer) as VField

Encryption Methods

UseEncryptionKey(inKey as String)
RequiresEncryptionKey() as Boolean
Encrypt(inKey as String)
Decrypt(inKey as String)

ChangeEncryptionKey(
 inOldKey as String
 inNewKey as String)

Dump Methods

Dump(
 inDumpFile as FolderItem,
 inDumpType as EVDumpType,
 inDumpData as EVDataKind,
 inFormatDump as Boolean)

LoadDump (
 inDumpFile as FolderItem,
 inDumpType as EVDumpType)

Selection Methods

SelectAllRecords as VBitSet,
SelectNoneRecords as VBitSet,

Sort(inSet as VSet,
 inField as VField,
 inAcending as Boolean = true) as VArraySet

Sort(inSet as VSet,
 s1 as VSortItem,
 s2 as VSortItem = nil,
 s3 as VSortItem = nil,
 s4 as VSortItem = nil) as VArraySet

V4RBRef-60

Class VTable

Class VTable

Class Description
Each VTable manages a table of your database. Each VTable must have at least one field
but is limited to no more than 65,535 fields.

V4RBRef-61

Class VTable Class description

Class VTable

Properties Description

BOF as Boolean

Returns TRUE if this is the first record of the Table.

Note: This property provides way used to ODBC API. Using this method you can navigate
records of a Table using a the DO WHILE loop.

Example:

 DO
 ...
 tbl.PrevRecord()
 WHILE(not tbl.BOF)

EOF as Boolean

Returns TRUE if this is the last record of the Table.

Note: This property provides a way used to ODBC API. Using this method you can navigate
records of aTable using a DO WHILE loop.

Example:

 DO
 ...
 tbl.NextRecord()
 WHILE(not tbl.EOF)

CollationAttribute(
 inColAttribute as EVColAttribute) as EVColAttributeValue

CollationAttribute(
 inColAttribute as EVColAttribute,
 inColAttributeValue as EVColAttributeValue)

Set/Get the value of the specified collation attribute for this table.

Example:

 dim v as integer
 v = table.CollationAttribute(EVColAttribute.kStrength)

 table.CollationAttribute(EVColAttribute.kStrength) =
 EVColAttributeValue.kPrimary

V4RBRef-62

Class VTable Properties

Class VTable

Database as VDataBase (r/o)

Returns the parent database of this table.

Example:

 db = table.Database

FieldCount as Integer (r/o)

Returns the number of custom fields in the table.

Example:

 fldCount = table.FieldCount

ID as Integer (r/o)

Returns the unique identifer of the table.

Example:

 id = table.ID

Name as String

The name of the table.

Example:

 dim sname as string

 sname = table.Name
 table.Name = "NewName"

V4RBRef-63

Class VTable Properties

Class VTable

IsEncrypted as Boolean (r/o)

Returns TRUE if the database is encrypted.

Example:

 encrypted = table.IsEncrypted

LinkCount as Integer (r/o)

Returns the number of links in the table.

Example:

 dim LinkCount as Integer
 LinkCount = table.LinkCount

LocaleName as String

Specifies for this table the locale name.

Example:

 dim LocaleName as String
 LocaleName = table.Locale

 table.LocaleName = "en_US"
 table.LocaleName = "jp_JP"

PhysicalRecordCount as Integer (r/o)

Returns the number of physical records in the table.

Example:

 physRecCount = table.PhysicalRecordCount

V4RBRef-64

Class VTable Properties

Class VTable

RecID as Integer

Returns the unique automatically generated RecID of the current record. Range of values
is 1..N, 0 - if the current record is undefined. Also you can use this property to change the
current record of the Table. In case you try move to a non-existant record the current record
will not be changed.

Example:
 recID = Table.RecID

 Table.RecID = RecID // move to specific record
 Table.RecID = 54 // move to specific record

 Table.RecID = Table.recID + 1 // move to next record
 Table.RecID = Table.recID - 1 // move to prev record

RecordCount as Integer (r/o)

Returns the number of logical records in the table.

Example:

 rcdCount = table.RecordCount

StorageEncoding as String

Specifies for this table the string encoding stored on disk.

Example:

 dim Encoding as String
 Encoding = table.StorageEncoding

 table.StorageEncoding = "UTF-16"

V4RBRef-65

Class VTable Properties

Class VTable

Field Methods

Field(inIndex as Integer) as VField

Parameter: Description:
inIndex The index of the field. Starts from 1.

This method allows you to access fields of a Table by index. If the field with the specified
index doesn’t exist then it returns nil.

Example:

 fld = Table.Field("LastName")

Field(inName as String) as VField

Parameter: Description:
inName The name of the field.

This method allows you to access fields of a Table by name. If the field with the specified
index or name doesn’t exist then it returns nil.

Example:

To get access to all the properties of a field you need to perform type casting:

 dim fld as VField
 dim fldString as VString

 fld = boPerson.Field(1)
 if(fld.type = kTypeString) then
 fldString = VString(fld)
 // now you can access properties of VString field:
 // MaxLength, Language,... using fldString
 end if

This fragment of code can also be written using the REALbasic operator isA:

 fld = boPerson.Field(1)
 if(fld isA VString) then
 fldString = VString(fld)
 end if

V4RBRef-66

Class VTable Field Methods

Class VTable

Link Methods

Link(inIndex as Integer) as VLink

Parameter: Description:
inIndex The index of a link.

Returns a link of this table by numeric index.

Example:

 link = tbl.Link(i)

Link(inName as String) as VLink

Parameter: Description:
inName The name of a link.

Returns a link of this table by name.

Example:

 link = tbl.Link("link1")

V4RBRef-67

Class VTable Links Methods

Class VTable

Record Methods

SetBlank(inAccess as EvValueAccess = forUpdate)

Parameter Description
inAccess Specify if you do SetBlank for add or for update of record.

Each VTable has a memory buffer in RAM for field values of the current record. This buf-
fer can be cleared by the SetBlank() method, i.e. all numeric fields become zero, all string
fields get an empty string. If any fields are nullable then they get a NULL value.

Parameter inAccess can be used to speed up SetBlank() if you add records. In this case
you can specify its value forAdd, so Valentina will not save copies of previouse field values.
In the same time you can always use the default value forUpdate and everyhting will work
correctly.

Example:

 Table.SetBlank()

AddRecord() as Integer

Adds a new record to the table with the current values in the memory buffer of this Table.
Returns the RecID of the new record.

Note: You need to assign values to the fields for the new record, then call AddRecord().

Example:

 thePerson.SetBlank
 thePerson.FirstName.Value = “John”
 thePerson.LastName.Value = “Roberts”
 NewRecID = thePerson.AddRecord()

DeleteRecord()

Deletes the current record of a Table.

After deletion, the next record becomes the current one if it exists. Otherwise the previ-
ous record becomes current. If a Cursor becomes empty then the current record will be
undefined.

Example:

 Table.DeleteRecord()

V4RBRef-68

Class VTable Record Methods

Class VTable

DeleteAllRecords(inSet as VSet = nil)

Parameter Description
inSet The selection of records.

Deletes all records in a Table if inSet is nil. Otherwise deletes only the specified selection
of records.

Example:

 Table.DeleteAllRecords()

UpdateRecord()

This method stores new modified values of fields of the current record of the Table.

Example:

 thePerson.RecID = SomeRecID
 thePerson.FirstName.Value = “Brian”
 thePerson.LastName.Value = “Blood”
 thePerson.UpdateRecord()

UpdateAllRecords(inSet as VSet = nil)

Parameter Description
inSet The selection of records.

Updates all records in a Table if inSet is nil. Otherwise updates only the specified selection
of records.

Example:

 Table.UpdateAllRecords()

V4RBRef-69

Class VTable Record Methods

Class VTable

Cache Methods

Flush()

This method flushes all unsaved information of the Table from the cache to disk.

Note:This can be faster than VDataBase.Flush() because it affects data from only one
Table.

Example:

 Table.Flush()

V4RBRef-70

Class VTable Cach Methods

Class VTable

Navigation Methods

FirstRecord() as Boolean

Goes to the first logical record of a Table. Reads the record from disk to the memory buffer
of a Table.
Returns TRUE if the first record is found.
Returns FALSE if the current record already was the first or the Table is empty.

Example:

 res = Table.FirstRecord()

LastRecord() as Boolean

Goes to the last logical record of a Table. Reads a record from disk to the memory buffer
of a Table.
Returns TRUE if the last record is found.
Returns FALSE if the current record already was the last or the Table is empty.

Example:

 res = Table.LastRecord()

PrevRecord() as Boolean

Goes to the previous logical record of a Table. Reads a record from disk to the memory
buffer of a Table.
Returns TRUE if the previous record is found.
Returns FALSE if the current record was the first or the Table is empty.

Example:

 res = Table.PrevRecord()

V4RBRef-71

Class VTable Navigation Methods

Class VTable

NextRecord() as Boolean

Goes to the next logical record of a Table.
Reads a record from disk to the memory buffer of a Table.
This returns TRUE if the next record is found, or FALSE if the current record was the last
or the Table is empty.

Example:

 res = Table.NextRecord()

RecordExists(inRecID as Integer) as Boolean

Parameter Description
inRecID RecID of a record.

Returns TRUE if the record with the specified RecID exists in the table.

Example:

 res = Table.RecordExists(RecID)

V4RBRef-72

Class VTable Navigation Methods

Class VTable

Working with Database Structure
The Valentina API for REALbasic lets you not only create or work with static database
structures but also exposes you to methods for creating dynamic database structures. This
is also very useful for when you upgrade your database application and need dynamically
updatе the database structure to support new features in your application.

Valentina for REALbasic provides the set of methods to create fields. There exists several
groups of methods which have similar parameters. So we will describe the groups of these
methods.

Methods to create numeric fields

CreateShortField(
 inName as string,
 inFlags as EVFlag = fNone,
 inMethod as String = ”") as VShort

Parameter: Description:
inName The name of the field.
inFlags The flags of the field.
inMethod The text of the method for a calculation field.

Create a numeric field of the corresponding type. The full list of methods you can see in
the section describing the VTable Class.

• To create a field you should specify its name.
• You can specify flags for a field to modify its behavior.
• If you want to create a calculated field then you should specify the method text.

Example:

 fldAge = tblPerson.CreateShortField(
 "age", EVFlags.fNullable + EVFlags.fIndexed)

V4RBRef-73

Class VTable Database Structure Methods

Class VTable

Methods to create string/varchar fields

CreateStringField(
 inName as String,
 inMaxLength as Integer,
 inFlags as EVFlag = fNone,
 inMethod as String = ”") as VString

CreateVarCharField(
 inName as String,
 inMaxLength as Integer,
 inFlags as EVFlag = fNone,
 inMethod as String = ”") as VVarChar

Parameter: Description:
inName The name of the field.
inMaxLength The maximum length (in characters)
inFlags The flags of the field.
inMethod The text of the method for a calculation field.

Creates a String or VarChar field.
• You need to specify the maximum length in characters. In the case of UTF16 encoding,
then 2 bytes per char will be used. If you use a single byte encoding, then one byte per
character will be used. You can specify flags for a field to modify its behavior.
• You can specify flags for a field to modify its behavior.
• If you want to create a calculated field then you should specify the method text.

Example

 fldAge = tblPerson.CreateStringField(
 "name", 40, EVFlags.fNullable + EVFlags.fIndexed)

Methods to create fixed/var binary fields

CreateFixedBinaryField(
 inName as String,
 inMaxLength as Integer) as VFixedBinary

CreateVarBinaryField(
 inName as String,
 inMaxLength as Integer) as VVarBinary

Parameter: Description:
inName The name of the field.
inMaxLength The maximum length (in bytes)

Create a fixed or variable size binary field.
• You need to specify the maximum length in bytes.

Example

 fldAge = tblPerson.FixedBinaryField(
 "nameStile", 40, EVFlags.fNullable + EVFlags.fIndexed)

V4RBRef-74

Class VTable Database Structure Methods

Class VTable

Method to create BLOB fields.

CreateBLOBField(
 inName as String,
 inSegmentSize as Integer) as VBLOB

Parameter: Description:
inName The name of the field.
inSegmentSize The segment size of the BLOB field.

Create a BLOB (Binary Large Object) field.

• You need to specify the segment size in bytes.

Example

 fldAge = tblPerson.CreateBLOBField(
 "notesStyle", 256)

Method to create TEXT fields.

CreateTextField(
 inName as String,
 inSegmentSize as Integer,
 inFlags as EVFlag = fNone,
 inMethod as String = ”") as VText

Parameter: Description:
inName The name of the field.
inSegmentSize The segment size of the BLOB field.
inFlags The flags of the field.
inMethod The text of the method for a calculation field.

Create a Text field.

• You need to specify the segment size in bytes.
• You can specify flags for a field to modify its behavior.
• If you want to create a calculated field then you should specify the method text.

Example

 fldAge = tblPerson.CreateTextField(
 "notes", 256, EVFlags.fNullable + EVFlags.fIndexed)

V4RBRef-75

Class VTable Database Structure Methods

Class VTable

Method to create Picture fields.

CreatePictureField(
 inName as String,
 inSegmentSize as Integer) as VPicture

Parameter: Description:
inName The name of the field.
inSegmentSize The segment size of the field.

Create a picture field. You need to specify the segment size in bytes.

Example

 fldAge = tblPerson.CreatePictureField(
 "foto", 256, EVFlags.fNullable + EVFlags.fIndexed)

Method to create ObjectPtr fields.

CreateObjectPtrField(
 inName as String,
 inTarget as VTable,
 inOnDeletion as Integer = 2,
 inFlags as EVFlag = fNone,
 inLinkName as String = "") as VObjectPtr

Parameter: Description:
inName The name of the field.
inTarget The target table.
inOnDeletion The behavior on deletion of the record-owner.
inFlags The flags of the field.
inLinkName The link name for this ObjectPtr-link.

Create an ObjectPtr field.

• You need to specify a target table and deletion control.
• You can specify flags for a field to modify its behavior.

Example

 fldAge = tblPerson.CreateObjectPtrField(
 "ParentPtr", EVFlags.fNullable + EVFlags.fIndexed)

V4RBRef-76

Class VTable Database Structure Methods

Class VTable

DropField(inFld as VField)

Parameter: Description:
inFld The field that should be deleted.

Removes the referenced field (column) from a Table. This operation is undoable! It will
occur instantaneously for a Table with any number of records.

Example:

 Table.DropField(fld)

ChangeType(
 inFld as VField,
 inNewType as EVFieldType,
 inParam1 as Integer) as VField

Parameter: Description:
inFld The field whose type should be changed.
inNewType New type for a field.
inParam The Additional parameter (see below).

Sometimes you may need to change the type of a field. For example, if you first made a
field “Quantity” as VUShort and later you have found that in real life the quantity might be
more than 65’535, you will need to change its type into VULong.

For String and VarChar fields inParam is MaxLength.
For BLOB an its subtypes (Text, Picture) in Param is SegmentSize.
For all remaining types of fields, in Param is ignored and should be zero.

Example:

 fld = Table.ChangeType(fld, EVFieldType.kTypeString,40)

V4RBRef-77

Class VTable Database Structure Methods

Class VTable

VTable Encryption Methods
The VTable class has a set of functions for encryption analog to functions of the VDatabase
and VField classes.

You may wish to use these functions if you want to encrypt only one or several Tables of a
database. It gains speed improvements over having to encrypt an entire database.

Notice, you can not specify the own encryption key for a Table in case if its database is
encrypted before.

Encrypt(inKey as String)

Parameter: Description:
inKey The encryption key.

Allows you to encrypt the Table.

When the function completes work, you get an encrypted Table on the disc. To future work
with this Table you need to assign the encryption key using the UseEncryptionKey() func-
tion.

Working time of the function is directly as the size of the Table.

ATTENTION: If the key is lost there is no posibility to decrypt data.

Example:

 tbl.Encrypt("key12345")

Decrypt(inKey as String)

Parameter: Description:
inKey The encryption key.

Allows to decrypt the Table.

If the Table already has records then they are decrypted on the disc. When the function
completes the work, you get the decrypted Table which does not need the encryption key
for access.

Working time of this function is directly as the size of the Table.

Example:

 tbl.Decrypt("key12345")

V4RBRef-78

Class VTable Encryption Methods

Class VTable

ChangeEncryptionKey(
 inOldKey as String,
 inNewKey as String)

Параметр: Описание:
inOldKey The encryption key.
inNewKey New encryption key.

Allows you to change the encryption key fot the Table.

Working time of this function is directly as the size of the Table.

Example:

 tbl.ChangeEncryptionKey("key12345", "key54321")

V4RBRef-79

Class VTable Encryption Methods

Class VTable

RequiresEncryptionKey() as Boolean

Returns True if the Table is encrypted with the own encryption key, otherwise it returns
False.

ATTENTION: if you encrypt the entire database than this method will return False for its
Tables.

This function can be used with programs such as Valentina Studio to check wether it is
necessary to show an user the dialog for password entry.

Example:

 res = tbl.RequiresEncryptionKey()

UseEncryptionKey(inKey as String)

Parameter: Description:
inKey The encryption key

Informs the database what key must be used for data encryption.

Returns an error "wrong key", if you specify a wrong key of encryption.

This function must be called just if VTable.RequiresEncryptionKey() returns True for this
Table.

ATTENTION: while the VDatabase.UseEncryptionKey() method must be called before
opening of the database, the VTable.UseEncryptionKey() methods must be called after
opening the database and before the first attempt to work with data of the Table.

Example:

 db.UseEncryptionKey("key12345")
 db.Open()

 tbl.UseEncryptionKey("key12345")

V4RBRef-80

Class VTable Encryption Methods

Class VTable

Dump Methods

Dump(
 inDumpFile as FolderItem,
 inDumpType as EVDumpType,
 inDumpData as EVDataKind,
 inFormatDump as Boolean)

Parameter Description
inDumpFile The location of the dump file.
inDumpType The Type of dump.
inDumpData Specify which information to dump.
inFormatDump If TRUE then formats the dump file to be human readable.

Dumps the table to a file in XML or SQL format.

Example:

 dim tbl as VTable
 ...
 tbl.Dump(fiXML, EVDumpType.kXML)

LoadDump(
 inDumpFile as FolderItem,
 inDumpType as EVDumpType)

Parameter Description
inDumpFile The location of the dump file.
inDumpType The type of dump.

Loads a XML or SQL dump from the specified file into the Table.

Example:

 dim tbl as VTable
 ...
 tbl.loadDump(fiXML, EVDumpType.kXML)

V4RBRef-81

Class VTable Dump Methods

Class VTable

Selection Methods

SelectAllRecords as VBitSet

Returns a selection of all records of a table as a VBitSet.

Example:

 allRecs = Table.SelectAllRecords()

SelectNoneRecords as VBitSet

Returns a VBitSet, which contains no records of a table. The size of the VBitSet is equal
to the number of physical records in the table.

Example:

 NoneRecs = Table.SelectNoneRecords()

V4RBRef-82

Class VTable Selection Methods

Class VTable

Sort(
 inSet as VSet,
 inField as VField,
 inAscending as boolean = true) as VArraySet

Parameter: Description:
inSet The set of records to be sorted. .
inField The field on which to do sorting.
inAscending The direction of sorting.

Executes sorting of the selection inSet by the field inField. The parameter inAscending
specifies the order of sorting.

Returns a new sorted selection as an ArraySet.

Example:

 SortedSet = table.Sort(allRecs, fldName)

Sort(inSet as VSet,
 s1 as VSortItem,
 s2 as VSortItem = nil,
 s3 as VSortItem = nil,
 s4 as VSortItem = nil) as VArraySet

Parameter: Description:
inSet The set to be sorted.
s1 Description of the first sorted field.
s2 Description of the second sorted field.
s3 Description of the third sorted field.
s4 Description of the fourth sorted field.

Executes sorting of a table selection inSet on several fields (up to 4).

Example:

 SortedSet = table.Sort(
 allRecs, new SortItem(fldName), new SortItem(fldLastName))

V4RBRef-83

Class VTable Selection Methods

Class VTable

Class VField
Properties

CollationAttribute(inColAttribute as EVColAttribute) as EVColAttributeValue
DefaultValue asVariant
ID as Integer (r/o)
IndexStyle as VIndexStyle
IsEncrypted as Boolean (r/o)
IsIndexed as Boolean
IsMethod as Boolean (r/o) // TRUE if the field is a method.
IsNullable as Boolean // TRUE if the field accepts NULL values
IsNull as Boolean // TRUE if the current value of the field is NULL.
IsUnique as Boolean // TRUE the field only has unique values
LocaleName as String
MethodText as String
Name as String // up to 32 bytes
StorageEncoding as String
Table as VTable (r/o)
Type as EVFieldType (r/o)
TypeString as String (r/o)
Value as Variant

Value methods

SetBlank() // clear the value of the field.

GetString() as String // returns a value of the Field as a String
SetString(inValue as String) // store a String value in the Field

Search methods

ValueExists(
 inValue as Variant,
 inSelection as VSet = nil,
 inSearchPref as EvSearch = kPreferIndexed) as Boolean

ValueExists(
 inValue as Variant,
 ByRef outCount as Integer,
 inSelection as VSet = nill,
 inSearchPref as EvSearch = kPreferIndexed) as Boolean

FindValue(
 inValue as Variant,
 inSelection as VSet = nil,
 inSearchPref as EvSearch = kPreferIndexed) as VBitSet

FindValueAsArraySet(
 inValue as Variant,
 inSelection as VSet = nil,
 inMaxCount as integer = &hffffffff, // ulong_max
 inSearchPref as EvSearch = kPreferIndexed) as VArraySet

V4RBRef-84

Class VField

Class VField

FindRange(
 inLeftInclude as Boolean,
 inLeftValue as Variant,
 inRightValue as Variant,
 inRightInclude as Boolean,
 inSelection as VSet = nil,
 inSearchPref as EvSearch = kPreferIndexed) as VBitSet

FindRangeAsArraySet(
 inLeftInclude as Boolean,
 inLeftValue as Variant,
 inRightValue as Variant,
 inRightInclude as Boolean,
 inSelection as VSet = nil,
 inMaxCount as integer = &hffffffff, // ulong_max
 inSearchPref as EvSearch = kPreferIndexed) as VArraySet

FindSingle(
 inValue as Variant,
 inSelection as VSet = nil,
 inSearchPref as EvSearch = kPreferIndexed) as Integer

FindNulls(
 inSelection as VSet = nil,
 inSearchPref as EvSearch = kPreferIndexed) as VBitSet

FindNotNulls(
 inSelection as VSet = nil,
 inSearchPref as EvSearch = kPreferIndexed) as VBitSet

FindStartsWith(
 inValue as String,
 inSelection as VSet = nil,
 inSearchPref as EvSearch = kPreferIndexed) as VBitSet

FindContains(
 inValue as String,
 inSelection as VSet = nil,
 inSearchPref as EvSearch = kPreferIndexed) as VBitSet

FindEndsWith(
 inValue as String,
 inSelection as VSet = nil,
 inSearchPref as EvSearch = kPreferIndexed) as VBitSet

FindRegEx (
 inValue as String,
 inSelection as VSet = nil,
 inSearchPref as EvSearch = kPreferIndexed) as VBitSet

V4RBRef-85

Class VField

Class VField

FindLike(
 inValue as String,
 inEscapeChar as String = "\",
 inSelection as VSet = nil,
 inSearchPref as EvSearch = kPreferIndexed) as VBitSet

FindDistinct(
 inSelection as VSet = nil,
 inSearchPref as EvSearch = kPreferIndexed) as VBitSet

Encryption methods

UseEncryptionKey(inKey as String)
RequiresEncryptionKey() as Boolean
Encrypt(inKey as String)
Decrypt(inKey as String)

ChangeEncryptionKey(
 inOldKey as String
 inNewKey as String)

V4RBRef-86

Class VField

Class VField

Class Description
This is the base abstract class for all other types of fields, so you will never create an instance
of it. Each field must have an unique name (case insensitive) in the scope of a Table.

Using VTable.Field() or VCursor. Field(), you can get a reference of VField. There is no real
difference between a VField of a Table and a VField of a Cursor.

If you need to get access to properties of VField subclasses, then you need to do type
casting to that subclass.

For example, if you have the reference of a string Field and want to access the property
MaxLength of the class VString:

 dim fld as VField
 dim str_fld as VString

 fld = Person.Field(“Name”)
 str_fld = VString(fld)
 if(str_fld <> nil)
 maxLen = str_fld.MaxLength
 end if

V4RBRef-87

Class VField Class description

Class VField

Properties Description

CollationAttribute(inColAttribute as EVColAttribute)
 as EVColAttributeValue

The value of the specified collation attribute for this table.

Example:

 v = fld.CollationAttribute(EVColAttribute.kStrength)

 fld.CollationAttribute(EVColAttribute.kStrength) = EVColAttributeValue.kPrimary

DefaultValue asVariant

The default value of the field. This value is used when you INSERT a new record into the
table, but do not specify a value for this field. By default this property is nil.

Example:

 v = fld.DefaultValue

ID as Integer (r/o)

Return the unique identifier of the field.

Example:

 id = fld.ID

IndexStyle as VIndexStyle

Specifies the index style for this field. You can use this property to assign/change the index
style of a field. Also you can check the current index style of the field.

Example:

 fld.IndexStyle = style1

 currStyle = fld.IndexStyle

V4RBRef-88

Class VField Properties

Class VField

IsEncrypted as Boolean (r/o)

Returns TRUE if the database is encrypted.

Example:

 encrypted = fld.IsEncrypted

IsIndexed as Boolean

If TRUE then Valentina will maintain an index for this field. This property can be changed
at runtime.

Example:

 fld.IsIndexed = FALSE
 ... // add many records for example
 fld.Indexed = TRUE

IsMethod as Boolean (r/o)

TRUE if the field is virtual, i.e. it is a Table Method.
Read Only.

Example:

 if(fld.IsMethod)

IsNullable as Boolean

If TRUE then this field can have a NULL value. In this case 1 bit per record is added.

Example:

 fld.IsNullable = TRUE
 if(fld.Nullable)

IsNull as Boolean

This is a record property. It is TRUE if the value of this field for the current record of the
table is NULL.

NOTE: don’t confuse it with the property of isNullable! isNullable is a property of the column
of a table, IsNull is a property of the current record.

Example:

 curs.Position = i
 if(curs.Field(1).IsNull) then

V4RBRef-89

Class VField Properties

Class VField

IsUnique as Boolean

If TRUE then this field will not accept duplicate entries. Also, if the field is unique then it is
automatically indexed.

Example:

 fld.IsUnique = TRUE
 if(fld.Unique)

LocaleName as String

Specifies the locale name for this field.

Example:

 LocaleName = fld.LocaleName

 fld.LocaleName = "en_US"
 fld.LocaleName = "jp_JP"

MethodText as String

Returns the text of the field method. Also you can use this property to change the text of
the field method.

Example:

 method = fld.MethodText

 fld.MethodText = “CONCAT(FirstName, ‘ ‘, LastName)”

Name as String

Each field has a unique name in the scope of a Table. The maximum length of the name
is 32 bytes.

Example:

 name = fld.Name
 fld.Name = "last"

StorageEncoding as String

Specifies for this table the encoding of strings stored on disk.

Example:

 Encoding = fld.StorageEncoding

 fld.StorageEncoding = "UTF-16"

V4RBRef-90

Class VField Properties

Class VField

Table as VTable (r/o)

Returns the Table of this field.

Example:

 t = fld.Table

Type as EVFieldType (r/o)

Each field has a type, which defines the context of data which can be stored in it. The type
of a field is defined when you use a constructor of a subclass of VField.

Each field has several flags, which define its behavior:

Example:

 case fld.Type

See also: VTable.ChangeType

TypeString as String (r/o)

Returns the type of this field as a string. This can be used in GUI tools.

Example:

 strType = fld.TypeString

Value as Variant

The VField class has a property Value of the general kind called a VARINAT. This means
that you can easily get/set value of any field type using this property.

Also note that each subclass of VField class has its own property Value of corresponding
type. When REALbasic and Valentina know the exact type of value they work faster. So if
you care about speed you should prefer to use the Value of subclasses.

Example:

 dim f as VField
 dim iv as integer

 f.value = 5
 iv = f.value

V4RBRef-91

Class VField Properties

Class VField

Value Methods

SetBlank()

Clears the value of a field.
- If the field has a default value then set its value to default.
- Otherwise If the field is Nullable, then set its value to NULL.
- Otherwise for a numeric field, set it to zero; for String fields, set it to an empty string.

Example:

 fld.SetBlank()

GetString() as String

Returns the value of the field as a string.

Example:

 str = fld.GetString()

SetString(inValue as String)

Parameter: Description:
inValue New value for the field.

Sets a field value using strings, regardless of the assigned field type. When assigning a
value to a field, Valentina will convert the string into the appropriate type.

If you develop an application with a dynamic database structure, then you will use these
methods instead of the Value property of the appropriate field class.

Example:

 str = "aaaaa"
 ...

 fld.SetString(str)

V4RBRef-92

Class VField Value Methods

Class VField

Search Methods

ValueExists(
 inValue as Variant,
 inSelection as VSet = nil,
 inSearchPref as EvSearch = kPreferIndexed) as Boolean

Parameter: Description:
inValue The value to search.
inSelection Selection of records.
inSearchPref Specifies if the search should use index.

Check if the specified value exists in the specified selection of the records. Returns TRUE
if at least one record has a value equal to inValue.

If inSelection is nil then it searches all records of the table. Otherwise it searches only
records in the specified selection.

Example:

 found = fld.ValueExists(5)
 found = fld.ValueExists(5, S)

ValueExists(
 inValue as Variant,
 ByRef outCount as Integer,
 inSelection as VSet = nill,
 inSearchPref as EvSearch = kPreferIndexed) as boolean

Parameter: Description:
inValue The value to search.
outCount The count of records that match inValue.
inSelection Selection of records.
inSearchPref Specifies if the search should use index.

Does the same as the above method ValueExists, but also calculates the count of records
that match. So this function requires more time.

Example:

 dim count as integer
 found = fld.ValueExists(5, count)
 found = fld.ValueExists(5, count, S)

V4RBRef-93

Class VField Search Methods

Class VField

FindValue(
 inValue as Variant,
 inSelection as VSet = nil,
 inSearchPref as EvSearch = kPreferIndexed) as VBitSet

Parameter: Description:
inValue The value to search.
inSelection Selection of records.
inSearchPref Specifies if the search should use index.

Finds the specified value in the selection of records. Returns a BitSet of found records.

If inSelection is nil then it searches all records of the table. Otherwise it searches only
records the specified selection.

Note: You should prefer to use this function in the case where you expect a large number
of found records. Otherwise it is better to use "FindValueAsArraySet()".

Example:

 dim s1 as VBitSet
 s1 = fld1.FindValue(5)
 s2 = fld2.FindValue(7, s1)

FindValueAsArraySet(
 inValue as Variant,
 inSelection as VSet = nil,
 inMaxCount as integer = &hffffffff,
 inSearchPref as EvSearch = kPreferIndexed) as VArraySet

Parameter: Description:
inValue The value to search
inSelection Selection of records.
inMaxCount The maximum number of records to return.
inSearchPref Specifies if the search should use index.

Does the same as the previous function but returns the selection as an ArraySet.

Note: You should prefer to use this function in the case where you expect a relatively small
number of found records. Otherwise it is better to use "FindValue()". Also using parameter
inMaxCount you can even reduce the number of returned records if you need.

Example:

 dim s1 as VArraySet
 s1 = fld1.FindValueAsArraySet(5)
 s2 = fld2.FindValueAsArraySet(7, s1)

V4RBRef-94

Class VField Search Methods

Class VField

FindRange(
 inLeftInclude as boolean,
 inLeftValue as Variant,
 inRightValue as Variant,
 inRightInclude as boolean,
 inSelection as VSet = nil,
 inSearchPref as EvSearch = kPreferIndexed) as VBitSet

Parameter: Description:
inleftInclude TRUE if the left value of the range must be included.
inLeftValue The left value of the range.
inRightValue TRUE if the right value of the range must be included.
inrRightInclude The right value of the range.
inSelection Selection of records.
inSearchPref Specifies if the search should use index.

Finds the records which have values that fit into the specified range of values. Returns a
BitSet of found records.

The range of values is defined in a mathematical way, e.g. [leftValue, rightValue] or (left-
Value, rightValue). Parameters LeftInclude and RightInclude specify if the end points of
range should be included or excluded.

If inSelection is nil then it searches all records of the table. Otherwise it searches only
records the specified selection.

Note: You should prefer to use this function in case you expect a large number of found
records. Otherwise it is better to use "FindRangeAsArraySet()".

Example:

 s1 = fld1.FindRange(true , 5, 8, true) // [5, 8]
 s1 = fld1.FindRange(false, 5, 8, true) // (5, 8]
 s1 = fld1.FindRange(true , 5, 8, false) // [5, 8)
 s1 = fld1.FindRange(false, 5, 8, false) // (5, 8)

V4RBRef-95

Class VField Search Methods

Class VField

FindRangeAsArraySet(
 inLeftInclude as boolean,
 inLeftValue as Variant,
 inRightValue as Variant,
 inRightInclude as boolean,
 inSelection as VSet = nil,
 inMaxCount as integer = &hffffffff,
 inSearchPref as EvSearch = kPreferIndexed) as VArraySet

Parameter: Description:
inleftInclude TRUE if the left value of the range must be included.
inLeftValue The left value of the range.
inRightValue TRUE if the right value of the range must be included.
inrRightInclude The right value of the range.
inSelection Selection of records.
inMaxCount The maximum number of records to return.
inSearchPref Specifies if the search should use index.

Does the same as the previous function but returns the selection as an ArraySet.

Note: You should prefer to use this function in the case where you expect a relatively small
number of found records. Otherwise it is better to use "FindRange()". Using parameter
inMaxCount you can even reduce the number of returned records if you need.

Example:

 s1 = fld1.FindRangeAsArraySet(true , 5, 8, true) // [5, 8]
 s1 = fld1.FindRangeAsArraySet(false, 5, 8, true) // (5, 8]
 s1 = fld1.FindRangeAsArraySet(true , 5, 8, false) // [5, 8)
 s1 = fld1.FindRangeAsArraySet(false, 5, 8, false) // (5, 8)

FindSingle(
 inValue as Variant,
 inSelection as VSet = nil,
 inSearchPref as EvSearch = kPreferIndexed) as Integer

Parameter: Description:
inValue The value to search
inSelection Selection of records.
inSearchPref Specifies if the search should use index.

Finds the specified value in the selection of records. Returns the RecID of the first found
record that matches. You should use this function only if you are sure that you will find one
record. The advantage of this function is that you avoid the overhead of Sets.

If inSelection is nil then it searches all records of the table. Otherwise it searches only
records the specified selection.

Example:

 foundRecID = fld.FindSingle(5)

V4RBRef-96

Class VField Search Methods

Class VField

FindDistinct(
 inSelection as VSet = nil,
 inSearchPref as EvSearch = kPreferIndexed) as VBitSet

Parameter: Description:
inSelection Selection of records.
inSearchPref Specifies if the search should use index.

Returns selection that contains only distinct values.

If inSelection is nil then it searches all records of the table. Otherwise it searches only
records of the specified selection.

Example:

 dim bset as VBitSet
 bset = fld.FindDistinct()

FindNulls(
 inSelection as VSet = nil,
 inSearchPref as EvSearch = kPreferIndexed) as VBitSet

Parameter: Description:
inSelection Selection of records.
inSearchPref Specifies if the search should use index.

Returns all records of the specified selection that have NULL values.

If inSelection is nil then it searches all records of the table. Otherwise it searches only
records of the specified selection.

Example:

 dim bset as VBitSet
 bset = fld.FindNulls()

FindNotNulls(
 inSelection as VSet = nil,
 inSearchPref as EvSearch = kPreferIndexed) as VBitSet

Parameter: Description:
inSelection Selection of records.
inSearchPref Specifies if the search should use index.

Returns all records of the specified selection that have NOT NULL values.

If inSelection is nil then it searches all records of the table. Otherwise it searches only
records of the specified selection.

Example:

 dim bset as VBitSet
 bset = fld.FindNotNulls()

V4RBRef-97

Class VField Search Methods

Class VField

String Search Methods

The following methods perform String searches on field values. These functions work for
any field type that can convert its value to a String. The result of a comparison depends on
the current Collation settings for this field.

All these functions have the optional parameter inSelection. If it is nil then all records of
table are searched. Otherwise only records of the specified selection are searched.

FindStartsWith(
 inValue as String,
 inSelection as VSet = nil,
 inSearchPref as EvSearch = kPreferIndexed) as VBitSet

Parameter: Description:
inValue The search String.
inSelection Selection of records.
inSearchPref Specifies if the search should use index.

Returns all records of the specified selection which have field value that starts with the
specified String.

Note: see additional description at the start of this paragraph.

Example:

 dim bset as VBitSet
 bset = fld.FindStartsWith("Jo")

FindContains(
 inValue as String,
 inSelection as VSet = nil,
 inSearchPref as EvSearch = kPreferIndexed) as VBitSet

Parameter: Description:
inValue The search String.
inSelection Selection of records.
inSearchPref Specifies if the search should use index.

Returns all records of the specified selection which have a field value that contains the
specified String.

Note: see additional description at the start of this paragraph.

Example:

 dim bset as VBitSet
 bset = fld.FindContains("Jo")

V4RBRef-98

Class VField Search Methods

Class VField

FindEndsWith(
 inValue as String,
 inSelection as VSet = nil,
 inSearchPref as EvSearch = kPreferIndexed) as VBitSet

Parameter: Description:
inValue The search String.
inSelection Selection of records.
inSearchPref Specifies if the search should use index.

Returns all records of the specified selection which have a field value that ends with the
specified String.

Note: see additional description at the start of this paragraph.

Example:

 dim bset as VBitSet
 bset = fld.FindEndsWith("hn")

FindLike(
 inValue as String,
 inEscapeChar as String = "\",
 inSelection as VSet = nil,
 inSearchPref as EvSearch = kPreferIndexed) as VBitSet

Parameter: Description:
inValue The search String.
inEscapeChar The character to be used as escape character.
inSelection Selection of records.
inSearchPref Specifies if the search should use index.

Returns all records of the specified selection which have a field value that matches the
SQL search WHERE fld LIKE 'str'.

Note: see additional description at the start of this paragraph.

Example:

 dim bset as VBitSet
 bset = fld.FindLike("%eter")

V4RBRef-99

Class VField Search Methods

Class VField

FindRegEx (
 inValue as String,
 inSelection as VSet = nil
 inSearchPref as EvSearch = kPreferIndexed) as VBitSet

Parameter: Description:
inValue The search String.
inSelection Selection of records.
inSearchPref Specifies if the search should use index.

Returns all records of the specified selection which have a field value that matches the
SQL search WHERE fld REGEX 'str'.

Note: see additional description at the start of this paragraph.

Example:

 dim bset as VBitSet
 bset = fld.FindRegEx("Pe?")

V4RBRef-100

Class VField Search Methods

Class VField

VField Encryption Methods
The VField class has a set of functions for encryption analog to functions of the VDatabase
and VTable classes.

You may wish to use these functions if you want to encrypt only one or several Fields of a
database. It gains speed improvements over having to encrypt an entire database.

Notice, you can not specify a special encryption key for a Field in case if its database is
encrypted before.

Encrypt(inKey as String)

Parameter: Description:
inKey The encryption key.

Allows you to encrypt the separate Field in the table.

When the function completes the work, you get an encrypted Field on the disc. To future
work with this Field you need to assign the encryption key using the UseEncryptionKey()
function.

Working time of the function is directly as the size of the Field.

ATTENTION!!! if the key is lost there is no posibility to decrypt data.

Example:

 fld.Encrypt("key12345")

Decrypt(inKey as String)

Parameter: Description:
inKey The encryption key.

Allows to decrypt the Field in the table.

If the Field already has records then they are decrypted on the disc. When the function
completes the work, you get the decrypted Field which does not need the encryption key
for access.

Working time of this function is directly as the size of the Field.

Example:

 fld.Decrypt("key12345")

V4RBRef-101

Class VField Encryption Methods

Class VField

ChangeEncryptionKey(
 inOldKey as String,
 inNewKey as String)

Параметр: Описание:
inOldKey The encryption key.
inNewKey New encryption key.

Allows you to change the encryption key for the Field.

Working time of this function is directly as the size of the Field.

Example:

 fld.ChangeEncryptionKey("key12345", "key54321")

V4RBRef-102

Class VField Encryption Methods

Class VField

RequiresEncryptionKey() as Boolean

Returns True if the Field is encrypted with the own encryption key, otherwise it returns
False.

ATTENTION: if you encrypt the entire database than this method will return the False for
its Fields.

This function can be used with programs such as Valentina Studio to check wether it is
necessary to show an user the dialog for password entry.

Example:

 res =fld.RequiresEncryptionKey()

UseEncryptionKey(inKey as String)

Parameter: Description:
inKey The encryption key.

Informs the database what encryption key must be used for data encryption.

Returns an error "wrong key", if you specify a wrong key of encryption.

This function must be called just if VField.RequiresEncryptionKey() returns True for this
Field.

ATTENTION: while the VDatabase.UseEncryptionKey() method must be called before
opening of the database, the VField.UseEncryptionKey() methods must be called after
opening the database and before the first attempt to work with data of the Field.

Example:

 db.UseEncryptionKey("key12345")
 db.Open()

 fld.UseEncryptionKey("key12345")

V4RBRef-103

Class VField Encryption Methods

Class VField

Numeric Fields
Valentina for REALbasic has a set of classes that represent numeric field types. All of these
classes are subclasses of the VField class, so they inherit all the properties and methods
of the VField class.

These classes are quite small. They have just a constructor and a property 'Value' of the
corresponding type. For example, the VBoolean field returns a boolean, while a VDouble
field returns a double.

Each class has a constructor where you should specify:
• the name of the field,
• the flags for this field
• the text of the method for calculated fields.

Example of constructor declarations

VBoolean (Name as a String, Flags as an Integer = fNone, inMethod as String = "")
VShort (Name as a String, Flags as an Integer = fNone, inMethod as String = "")
VUShort (Name as a String, Flags as an Integer = fNone, inMethod as String = "")
VMedium (Name as a String, Flags as an Integer = fNone, inMethod as String = "")
VUMedium (Name as a String, Flags as an Integer = fNone, inMethod as String = "")
VLong (Name as a String, Flags as an Integer = fNone, inMethod as String = "")
VULong (Name as a String, Flags as an Integer = fNone, inMethod as String = "")
VLLong (Name as a String, Flags as an Integer = fNone, inMethod as String = "")
VULLong (Name as a String, Flags as an Integer = fNone, inMethod as String = "")
VFloat (Name as a String, Flags as an Integer = fNone, inMethod as String = "")
VDouble (Name as a String, Flags as an Integer = fNone, inMethod as String = "")

You will need to use these classes directly:
• if you want to use Classes way in your project.
• if you want to perform type casting from a VField to one of the Numeric types.

Example:

fld = new VByte(“byte_fld”, EVFlags.fNone)
fld = new VByte(“byte_fld”, EVFlags.fIndexed)
fld = new VByte(“byte_fld”, EVFlags.fIndexed + EVFlags.fUnique)
fld = new VByte(“byte_fld”, EVFlags.fIndexed + EVFlags.fNullable)

V4RBRef-104

Numeric Fields

Numeric Fields

Class VDate

Properties

Day as Integer // 1..31
Month as Integer // 1.12
Year as Integer // any year between -222..+222

Constructor

VDate(
 inName as String,
 inFlags as Integer = fNone,
 inMethod as String = "")

Method

Set(
 inYear as Integer,
 inMonth as Integer,
 inDay as Integer)

SetDate(inDate as Date)
GetDate() as Date

V4RBRef-105

Class VDate

Class Vdate

VDate Methods
Set(
 inYear as Integer,
 inMonth as Integer,
 inDay as Integer)

Parameter: Description:
inYear The Year of a new value.
inMonth The Month of a new value.
inDay The Day of a new value.

Set the value of date field.

Example:

 fldDate.Set(1972, 3, 20)

SetDate(inDate as Date)

Parameter: Description:
inDate The Date of a new value.

This function set value of VDate field with help of native REALbasic date value.

Example:

 Dim myDate As Date
 myDate = New Date
 fldDate.SetDate(myDate)

GetDate() as Date

This function get value from VDate field into native REALbasic date value.

Example:

 Dim myDate As Date
 myDate = fldDate.GetDate()

V4RBRef-106

Class VDate VDate Methods

Class VDate

Class VTime

Properties

Hour as Integer // 0..23
Minute as Integer // 0..59
Second as Integer // 0..59
MilliSecond as Integer

Constructor

VTime(
 inName as String,
 inFlags as Integer = fNone,
 inMethod as string = "")

Method

Set(
 inHour as Integer,
 inMinute as Integer,
 inSecond as Integer)

SetTime(inDate as Date)
GetTime() as Date

V4RBRef-107

Class VTime

Class VTime

VTime Methods

Set(
 inHour as Integer,
 inMinute as Integer,
 inSecond as Integer)

Parameter: Description:
inHour Hours of a new value.
inMinute Minutes of a new value.
inSecond Seconds of a new value.

The classes VDate and VTime differ from the group of numeric fields in that they have a
complex “Value” represented by several properties.

Also, they have the method Set() that allows for setting all three properties in one call.

Example:

 fldTime.Set(7, 20, 0)

SetTime(inDate as Date)

Parameter: Description:
inDate The Date of a new value.

This function set value of VTime field with help of native REALbasic date value.

Example:

 Dim myDate As Date
 myDate = New Date
 fldTime.SetTime(myDate)

GetTime() as Date

This function get value from VTime field into native REALbasic date value.

Example:

 Dim myDate As Date
 myDate = fldTime.GetTime()

V4RBRef-108

Class VTime VTime Methods

Class VTime

Class VDateTime

Properties

Day as Integer // 1..31
Hour as Integer // 0..23
Month as Integer // 1.12
Minute as Integer // 0..59
Second as Integer // 0..59
Year as Integer // any year between -222..+222
Millisecond as Integer

Constructor

VDateTime(
 inName as String,
 inFlags as InInteger = fNone,
 inMethod as String = "")

Methods

SetDate(
 inYear as Integer,
 inMonth as Integer,
 inDay as Integer)

SetTime(
 inHour as Integer,
 inMinute as Integer,
 inSecond as Integer)

SetDateTime(inDate as Date)
GetDateTime() as Date

V4RBRef-109

Class VDateTime

Class VDateTime

VDateTime Methods

SetDate(inYear as Integer, inMonth as Integer, inDay as Integer)

Parameter: Description:
inYear The Year of a new value.
inMonth The Month of a new value.
inDay The Day of a new value.

Sets the day, month and year.

Example:

 fldDataTime.SetDate(1972, 03, 20)

SetTime(inHour as Integer, inMinute as Integer, inSecond as Integer)

Parameter: Description:
inHour Hours of a new value.
inMinute Minutes of a new value.
inSecond Seconds of a new value.

Sets the time of day.

Example:

 fldDataTime.SetTime(7, 20, 00)

SetDateTime(inDate as Date)

Parameter: Description:
inDate The Date of a new value.

This function set value of VDateTime field with help of native REALbasic date value.

Example:

 Dim myDate As Date
 myDate = New Date
 fldDateTime.SetDateTime(myDate)

GetDateTime() as Date

This function get value from VDateTime field into native REALbasic date value.

Example:
 Dim myDate As Date
 myDate = fldDateTime.GetDateTime()

V4RBRef-110

Class VDateTime VDateTime Methods

Class VDateTime

Class VString
Class VVarChar

Properties

MaxLength as Integer // the maximum length of a string which can be stored
IndexByWords as Boolean // if TRUE then each word of the string is indexed separately
Value as String

Constructor

VString / VVarChar(
 inName as String,
 inMaxLength as Integer,
 inFlags as Integerб
 inMethod as String = ””)

V4RBRef-111

Class VString, VVarChar

Class VString, VVarChar

Class VString
Class VVarChar
Class Description

This type of field is used for storing strings in a database. VString and VVarChar classes
have the same API, except for their constructors.

V4RBRef-112

Class VString, VVarChar Class Description

Class VString, VVarChar

Properties Description

MaxLength as Integer

The Maximum length of a field can be in the range of values 1 .. 65535 bytes. It can be
applied to VString, VVarChar, VFixedBinary, VVarBinary fields.

Note: If you change the maximum length of the field, then you also are changing a size of
the table records. This means that Valentina must rebuild the table, so this operation may
take a long time.

Example:

 len = fldString.MaxLength
 fldString.MaxLength = 120

IndexByWords as Boolean

Using this flag you can specify that a String or a VarChar field should be indexed by
words.

Example:

 fldString.IndexByWords = TRUE

Value as String

You should use this property to set or get the value of a String or a VarChar field.

Example:

 FirstName.Value = “John”
 LastName.Value = “Roberts”

V4RBRef-113

Class VString, VVarChar Properties

Class VString, VVarChar

Class VFixedBinary
Class VVarBinary

Class Description

This type of field is used for storing small binary data in a database. VFixedBinary and
VVarBinary classes have the same API, except for their constructors.

Note: The String type of REALbasic is able to correctly handle strings that contain a zero
value inside. We mirror this feature of REALbasic in these classes making, a Value of the
type String.

Tip: You can use these classes to store text style.

V4RBRef-114

Class VFixedBinary, VVarBinary Class Description

Class VFixedBinary, VVarBinary

Properties Description

MaxLength as Integer

The maximum length of a FixedBinary and a VarBinary field can be in the range of values
1 .. 65535 bytes.

Example:

 len = fldBinary.MaxLength
 fldBinary.MaxLength = 120

Value as String

You should use this property to set/get the value of a FixedBinary or a VarBinary field.

Example:

 dim str as String

 str = "aaa" + chr(0) + "bbb"
 fldBinary.Value = str

 str = fldBinary.Value

V4RBRef-115

Class VFixedBinary, VVarBinary Properties

Class VFixedBinary, VVarBinary

Styled Text
To read styled text into a database, your database table must have a field for the text and
a separate field for the style info. So, you need these Table properties:

 storedText as VString
 storedStyle as VFixedBinary

Note: The field storedText can be VString, VVarChar or VText – whatever is appropriate for
your text. For the field storedStyle, you should use VFixedBinary, VVarBinary or VBLOB
correspondingly.

In your Table constructor, instantiate these fields:

 storedText = new Vstring(”storedText_field”,1024)
 storedStyle = new VFixedBinary(”storedText_style”,1024)

In the example below, ‘myCursor’ is a ‘VCursor’. The text is read and written to an editField
called ‘editField1’.

To write the styled text to the database use the following:

 myCursor.setBlank
 myCursor.Field(”storedText_field”).setString(editField1.text)
 myCursor.FixedBinaryField(”storedText_style”).value = editField1.textStyleData
 myCursor.update

To read the styled text from the database cursor back into the editField:

 dim temp as string
 temp = myCursor.FixedBinaryField(”storedText_style”).value
 editField1.setTextAndStyle(myCursor.Field(”storedText_field”), temp)

Tip: Do not forget that styled text under Windows and MacOS are treated differently, so
you need to build code according to the target platform.

V4RBRef-116

Class VFixedBinary, VVarBinary Styled Text

Class VFixedBinary, VVarBinary

Class VBLOB

Properties

DataSize as Integer (r/o)
IsCompressed as Boolean // TRUE if this BLOB field is compressed.
SegmentSize as Integer (r/o) // (in bytes), N * 1024

Constructor

VBLOB(
 inName as String,
 inSegmentSize as Integer = 256)

Methods

DeleteData()

ReadData as String
WriteData(inData as String)

FromFile(inLocation as Folderitem)
ToFile(inLocation as Folderitem)

V4RBRef-117

Class VBLOB

Class VBLOB

Class Description

BLOB is a Binary Large OBject. This type of a field is intended for storing large chunks of
data, such as graphics, video, text and more.

Constructors of BLOB fields do not have parameter Flags.

V4RBRef-118

Class VBLOB Class Description

Class VBLOB

Properties Description

DataSize as integer (r/o)

Returns the size in bytes of the value of the current record for this BLOB field.

Example:

 dim size as Long
 size = fldBLOB.DataSize()

IsCompressed as Boolean

If TRUE then a BLOB field will compress its data when writing to disk.

Note: The compression method supported by Valentina is described in the Valentina kernel
documentation.

Example:

 fldBlob.IsCompressed = true

SegmentSize as Integer (r/o)

Returns the segment size (in bytes) of a BLOB field.

Example:

 segment = fldBlob.SegmentSize

V4RBRef-119

Class VBLOB Properties

Class VBLOB

Methods

DeleteData()

Deletes BLOB data of the field.

Note: After this function you must Update() the record of a Table to store a new reference
to the BLOB record in the table.

This method is useful if you want to delete BLOB data, but you do not want to delete re-
cords.

Example:

 fldBLOB.DeleteData()
 curs.UpdateRecord()

ReadData as String

Read value of BLOB and return it as string (note that a REALbasic String can hold binary
data).

Example:

 dim blobValue as String
 blobValue = fldBLOB.readData()

WriteData(inData as String)

Parameter: Description:
inData The binary data to be stored in the BLOB field.

These methods allow you to store in the BLOB field any raw data using REALbasic
String.

Example:

 dim s1 as String
 s1 = “aaaaaa” // 6 chars
 blob_fld.WriteData(s1)

V4RBRef-120

Class VBLOB Methods

Class VBLOB

FromFile(inLocation as Folderitem)

Parameter: Description:
inLocation A location of the file.

Reads the whole file into the BLOB field.

Example:

 fldBLOB.FromFile(location)
 tbl.AddRecord()

ToFile(inLocation as Folderitem)

Parameter: Description:
inLocation A location of the file.

Uploads the value of BLOB field of the current record into a new disk file, specified by
parameter inLocation.

Example:

 fldBLOB.ToFile(location)

V4RBRef-121

Class VBLOB Methods

Class VBLOB

Class VText
Properties

IndexByWords as Boolean // TRUE if indexed by each word of the string
Value as String

Constructor

VText(
 inName as String,
 inSegmentSize as Integer = 256,
 inFlags as Integer = 0,
 inMethod as String = ””)

V4RBRef-122

Class VText

Class VText

Class Description

This is a special class for storing text which combines the features of VString and
VBLOB.

It can be indexed like a VString but has no limit in the size of the content because it is
subclass of VBLOB.

String and Text fields can be searched using regular expressions.

V4RBRef-123

Class VText Class Description

Class VText

Class VPicture

Properties

DefQuality as Integer // Default quality for this Picture field.
PictureType as EVPictureType (r/o)

Constructor

VPicture(
 inName as String,
 inSegmentSize as Integer = 256)

Methods

ReadPicture() as Picture
WritePictureAs(
 inPict as Picture,
 inPictType as EVPictureType,
 inQuality as Integer = 50)

V4RBRef-124

Class VPicture

Class VPicture

Class Description
A Picture field is a special BLOB field which can store pictures in different formats.

Note: By default it converts a Bitmap OS picture into JPEG format.

This field will get and return back a PICT handle on Mac OS and a DIB handle on Windows
OS .

V4RBRef-125

Class VPicture Class Description

Class VPicture

Methods

WritePictureAs(
 inPict as Picture,
 inPictType as EVPictureType = kJPG,
 inQuality as Integer = 50)

Parameter: Description:
inPict The Picture to be stored.
inPictType The picture format.
inQuality Compresion rate, 0..100, default is 50.

Stores a Picture into VPicture field using the specified format.

Parameter Quality can be in the range 0..100 and specify quality of a jpeg compression.
The larger the value the better the quality. This parameter can be ignored if the picture
format does not require it, e.g. TIFF.

This method expect that Picture is
 DIB on Windows.
 PICT on MAC.

Note, PICT with JPG compression also is accepted if you specify inPictType as kJPG.

Example:

 fldPicture.WritePictureAs(inPict, EVPicture.kJPG, 50)

ReadPicture() as Picture

Reads a picture from the VPicture field and returns it as a Picture to REALbasic. The picture
in the database can be in any supported format.

Note, ReadPicture also can show pictures that was added into database using VBLOB.
FromFile() method.

Example:

 dim pict as Picture
 pict = fldPicture.ReadPicture()

V4RBRef-126

Class VPicture Methods

Class VPicture

Class VObjectPtr

Properties

OnDeletion as EVOnDelete
Target as VTable
Value as Integer // here is stored the RecID of the target record

Constructor

VObjectPtr(
 inName as String,
 inTarget as VTable,
 inOnDeletion as EVOnDelete= kSetNull,
 inFlags as IEVFlag = fNone,
 inLinkName as String = ””)

Method

ConvertFromRDB(
 inPrimaryKey as VField,
 inForeignKey as VField)

AsVLink2() as VLink2

V4RBRef-127

Class VObjectPtr

Class VObjectPtr

The field of the type ObjectPtr is intended to establish a “many to one” relation [M:1] be-
tween two Tables by ‘direct pointer’.

Note; In SQL this is called a FOREIGN KEY

It stores references to the related parent record (“One” record). The value of an ObjectPtr
field is an unsigned long number (4 bytes, ulong) and it is the physical record number of
the parent table. To set the Value of this field you must get the RecID of the record in the
TargetTable:
 mObjectPtr.Value = boPerson.GetRecID

Sometimes you may wish to relate a record of Table B to a non-current record of Table A,
in this case you can save the RecID to a variable and use it later:
 dim RecID as Integer
 RecID = TableA.GetRecID
 TableA.GoToRecord(SomeOtherRecord)
 ...
 TableB.TableA_Ptr.Value = RecID

• RecID is 1-based, zero is used for the ID of the undefined record.

The ObjectPtr field must know the pointed object (a parent object) and a deletion control
to work correctly.

The Target must be defined when you create the field. There is no reason to change the
Target at runtime.

The DeletionControl regulates a record deletion in the “Many” table when a record is deleted
in the “One” table. It can be changed at runtime. This is the rule, which defines the behavior
on deletion of a record. There are three methods for deleting records.

Leave related Many records:
From the database the record of the parent table is only deleted. The ObjectPtr field of the
related child-records is automatically set to 0.

Delete related Many records:
The “One” and “Many “ components are all deleted. If a Many record also has some related
Many records in a third Table, then they are also deleted in a cascade delete.

Can not delete if related Many:
The deletion of the One record is not allowed if there is at least one related Many record.

The ObjectPtr field can be used to establish a MANY to ONE relation, but it also can be
used to establish a ONE to ONE relation. For this you should specify the ObjectPtr field as
unique. Valentina can use this information to optimize a query.

Besides using the ObjectPtr field you can establish a Many to Many relation between two
tables. For this you need to create an additional third table - Link as shown on the pic-
ture.

V4RBRef-128

Class VObjectPtr Properties

Class VObjectPtr

Properties Description

OnDelete as Integer

The behavior on deletion of the record-owner.

Example:

 v = fldPtr.OnDelete

Target as VTable

The target table for this ObjectPtr field.

Note: Usually you will read this property. There is not much sense to change the existing
target table, because in this case all values of the ObjectPtr field will become zero.

Example:

 tbl = fldPtr.Target

Value as Integer

The Value of the field.

Example:

 fldPtr.value = tblPerson.RecID

Example:

 tblPerson.RecID = fldPtr.value

V4RBRef-129

Class VObjectPtr Properties

Class VObjectPtr

Constructor

VObjectPtr(
 inName as String,
 inTarget as VTable,
 inOnDeletion as EVOnDelete= kSetNull,
 inFlags as EVFlag = fNone,
 inLinkName as String = ””)

Parameter: Description:
inName The name of the field.
inTarget The target table.
inOnDeletion The behavior on deletion of the record-owner.
inFlags The flags of the field.
inLinkName The name of the link.

Constructor of ObjectPtr field.

Note: you will need this if you use the Class method of Valentina to create a database.

Example:

 sub tblPhone

 mfPersonPtr = new VObjectPtr(
 "PersonPtr", tblPerson, EVOnDelete.kSetNull)

 end sub

V4RBRef-130

Class VObjectPtr Constructor

Class VObjectPtr

ConvertFromRDB(
 inPrimaryKey as VField,
 inForeignKey as VField)

Parameter: Description:
inPrimaryKey The field of the target table that plays role of the
 PRIMARY KEY field.
inForeignKey The field of the table of this ObjectPtr field that plays role of the
 FOREIGN KEY.

Converts a RDB-link between 2 tables into an ObjectPtr-link.

Example:

 fldPtr.ConvertFromRDB(fldPersonID, fldPersonPtr)

V4RBRef-131

Class VObjectPtr Method

Class VObjectPtr

Class VCursor

Properties

DataBase as VDataBase // (r/o) Database of this Cursor.
FieldCount as Integer // (r/o) number of selected fields for this Cursor.
Position as Integer
RecordCount as Integer // Number of selected records, it can be reduced.
ReadOnly as Boolean // (r/o) TRUE if records can’t be changed
 // i.e. you can’t add/update/delete records.

Creation of Cursor

VCursor(
 inDatabase as VDatabase,
 inQuery as String,
 inCursorLocation as EVCursorLocation = kClientSide,
 inLocksType as EVLockType = kReadOnly,
 inCursorDirection as EVCursorDirection = kForwardOnly)

Field methods

Field(InIndex as Integer) as VField
Field(InName as String) as VField

BooleanField(inIndex as Integer) as VBoolean
BooleanField(inName as String) as VBoolean

ByteField(inIndex as Integer) as VByte
ByteField(inName as String) as VByte

ShortField(inIndex as Integer) as VShort
ShortField(inName as String) as VShort

UShortField(inIndex as Integer) as VUShort
UShortField(inName as String) as VUShort

MediumField(inIndex as Integer) as VMedium
MediumField(inName as String) as VMedium

UMediumField(inIndex as Integer) as VUMedium
UMediumField(inName as String) as VUMedium

LongField(inIndex as Integer) as VLong
LongField(inName as String) as VLong

ULongField(inIndex as Integer) as VULong
ULongField(inName as String) as VULong

LLongField(inIndex as Integer) as VLLong
LLongField(inName as String) as VLong

V4RBRef-132

Class VCursor

Class VCursor

ULLongField(inIndex as Integer) as VULLong
ULLongField(inName as String) as VULLong

FloatField(inIndex as Integer) as VFloat
FloatField(inName as String) as VFloat

DoubleField(inIndex as Integer) as VDouble
DoubleField(inName as String) as VDouble

DateField(inIndex as Integer) as VDate
DateField(inName as String) as VDate

TimeField(inIndex as Integer) as VTime
TimeField(inName as String) as VTime

DateTimeField(inIndex as Integer) as VDateTime
DateTimeField(inName as String) as VDateTime

StringField(inIndex as Integer) as VString
StringField(inName as String) as VString

VarCharField(inIndex as Integer) as VVarChar
VarCharField(inName as String) as VVarChar

FixedBinaryField(inIndex as Integer) as VFixedBinary
FixedBinaryField(inName as String) as VFixedBinary

VarBinaryField(inIndex as Integer) as VVarBinary
VarBinaryField(inName as String) as VVarBinary

BlobField(inIndex as Integer) as VBlob
BlobField(inName as String) as VBlob

TextField(inIndex as Integer) as VText
TextField(inName as String) as VText

PictureField(inIndex as Integer) as VPicture
PictureField(inName as String) as VPicture

ObjectPtrField(inIndex as Integer) as VObjectPtr
ObjectPtrField(inName as String) as VObjectPtr

V4RBRef-133

Class VCursor

Class VCursor

Navigation methods

FirstRecord() as Boolean
LastRecord() as Boolean
PrevRecord() as Boolean
NextRecord() as Boolean

Record methods

SetBlank() // blank the memory buffer of the record
AddRecord() as Integer // adds a new record to a cursor

UpdateRecord() // updates the current records of the cursor
UpdateAllRecords() // updates ALL records of a cursor with a new value.

DeleteRecord() // deletes the current record of a cursor
DeleteAllRecords() // deletes all records of a cursor

DropRecord() // removes the current record from a cursor
 // but don’t delete it from the original Table.

Import/export methods

ImportText(
 inFile as FolderItem,
 inFieldDelimiter as String = chr(09),
 inLineDelimiter as String = LE,
 inEncoding as String = ”UTF-16",
 inHasColumHeader as Boolean = FALSE,
 inMaxRecordsToImport as Integer = 0)

ExportText(
 inFile as FolderItem,
 inFieldDelimiter as String = chr(09),
 inLineDelimiter as String = LE,
 inEncoding as String =”UTF-16",
 inHasColumHeader as Boolean = FALSE)

Conversion methods

ToArraySet() as VArraySet

V4RBRef-134

Class VCursor

Class VCursor

Class Description
This class provides the result of the execution of a SQL SELECT statement. Valentina of-
fers a cursor with a random access to the records.

Each cursor has an independent memory buffer, so you can have many cursors at the same
time for the same BaseObject, each of which points to different records.

V4RBRef-135

Class VCursor Class Description

Class VCursor

Properties Description

Database as VDataBase

Returns the database of this cursor.

Example:

 db = fld.Database

FieldCount as Integer

Returns the number of fields of this cursor.

Example:

 fldCount = curs.FieldCount // get local shortcut to avoid of calling in loop
 for i = 1 to fldcount
 ...
 next

Position as Integer

The current position in the cursor. You can set or get the current position of cursor using
this property.

The valid range of values is from 1 to the.

When you assign a new value to the Position, Valentina loads a record from the disk to
the memory buffer.

Note: If you try to assign a wrong value then the current record is not changed.

Example:

 for i = 1 to curs.RecordCount
 curs.Position = i
 next

V4RBRef-136

Class VCursor

Class VCursor

Properties

RecordCount as Integer

Returns the number of records of cursor.

Example:

 recCount = curs.RecordCount // store into a local variable to avoid of calling it
loop
 for i = 1 to fldcount
 ...
 next

ReadOnly as Boolean

Returns TRUE if the Cursor is read only, otherwise returns FALSE.

Example:

 if(curs.ReadOnly)

V4RBRef-137

Class VCursor

Class VCursor

Properties

Creation of Cursor

Creation of Cursor
VCursor(
 inDatabase as VDatabase,
 inQuery as String,
 inCursorLocation as EVCursorLocation = kClientSide,
 inLockType as EVLockType = kReadOnly,
 inCursorDirection as EVCursorDirection = kForwardOnly)

Parameter: Description:
inDatabase The reference to VDataBase object.
inQuery The query string.
inCursorLocation The location of the cursor.
inLocksType The type of record locks.
inCursorDirection The cursor direction.

This constructor provides you with the second way to create a Cursor . If you want to define
a subclass of VCursor than you need to use the constructor of VCursor.

Note: The otherway to create a Cursor is by using the method VDatabase.SQLSelect().

The constructor is given a string as a parameter (as inQuery), resolves it, then returns the
resulting table as a cursor of type VCursor.

Note: When finished with a cursor, you must assign it the value nil to destroy it and free
memory.

The optional parameters inCursorLocation, inLockType, inCursorDirection allow you to
control the behavior of the cursor. See the documentation on Valentina Kernel.and VServer
for more details.

You can set the following parameters with these values:

inCursorLocation: kClientSide = 1, kServerSide = 2, kServerSideBulk = 3
inLockType: kNoLocks = 1, kReadOnly = 2, kReadWrite = 3
inCursorDirection: kForwardOnly = 1, kRandom = 2

By default these parameters get the following values:
 kClientSide, kReadOnly, kForwardOnly

Example:

Sub myCursor(inDB as VDataBase, inSQL as String)
 VCursor(inDB, inSQL) // init parent class.
 ...
end sub

This assumes that you want to create the class myCursor which is a subclass of VCur-
sor.

V4RBRef-138

Class VCursor

Class VCursor

Field Methods

Field(inIndex as Integer) as VField
Field(inName as String) as VField

Parameter: Description:
inIndex The Index of the field. Starts from 1.
inName The Name of the field.

You can use these methods to access fields of the cursor and their values. The order of fields
in the cursor is the same as the order of fields in the SELECT statement of the query.

Example:

 dim i, Records as Integer
 LastName as String
 dim cur as VCursor

 cur = gDataBase.SQLSelect(“select * from person where name like ‘john’ no_
case”)

 Records = cur.RecordCount
 for i = 1 to Records
 cur.Position = i
 LastName = cur.Field(“last_name”).GetString
 next

V4RBRef-139

Class VCursor Field Methods

Class VCursor

Type casting Methods

After you get the field as a VField, you can use type casting to get a reference to the actual
class of the field.

As described in the paragaph “VField” you may need to perform type casting:
a) to access a value of the field not as a String but as a number which is about 20 times
faster.
b) to access properties of the VField subclasses.

The VCursor class has a set of methods which do this type casting for you.

BooleanField(InIndex as Integer) as VBoolean
BooleanField(InName as String) as VBoolean

ByteField(InIndex as Integer) as VByte
ByteField(InName as String) as VByte

ShortField(inIndex as Integer) as VShort
ShortField(inName as String) as VShort

UShortField(inIndex as Integer) as VUShort
UShortField(inName as String) as VUShort

MediumField(inIndex as Integer) as VMedium
MediumField(inName as String) as VMedium

UMediumField(inIndex as Integer) as VUMedium
UMediumField(inName as String) as VUMedium

LongField(inIndex as Integer) as VLong
LongField(inName as String) as VLong

ULongField(inIndex as Integer) as VULong
ULongField(inName as String) as VULong

LLongField(inIndex as Integer) as VLLong
LLongField(inName as String) as VLLong

ULLongField(inIndex as Integer) as VULLong
ULLongField(inName as String) as VULLong

FloatField(inIndex as Integer) as VFloat
FloatField(inName as String) as VFloat

DoubleField(inIndex as Integer) as VDouble
DoubleField(inName as String) as VDouble

V4RBRef-140

Class VCursor Type casting Methods

Class VCursor

DateField(inIndex as Integer) as VDate
DateField(inName as String) as VDate

TimeField(inIndex as Integer) as VTime
TimeField(inName as String) as VTime

DateTimeField(inIndex as Integer) as VDateTime
DateTimeField(inName as String) as VDateTime

StringField(inIndex as Integer) as VString
StringField(inName as String) as VString

VarCharField(inIndex as Integer) as VVarChar
VarCharField(inName as String) as VVarChar

FixedBinaryField(inIndex as Integer) as VFixedBinary
FixedBinaryField(inName as String) as VFixedBinary

VarBinaryField(inIndex as Integer) as VVarBinary
VarBinaryField(inName as String) as VVarBinary

BlobField(inIndex as Integer) as VBlob
BlobField(inName as String) as VBlob

TextField(inIndex as Integer) as VText
TextField(inName as String) as VText

PictureField(inIndex as Integer) as VPicture
PictureField(inName as String) as VPicture

ObjectPtrField(inIndex as Integer) as VObjectPtr
ObjectPtrField(inName as String) as VObjectPtr

V4RBRef-141

Class VCursor Type casting Methods

Class VCursor

You have several ways to work with fields of a cursor. Lets say you have variables defined
as:

 dim fld as VField
 dim fldLong as VLong

Then you define

 fld = curs.Field(“long_fld”)
 VLong(fld).value = 5

Here we get an instance of the VField class from the Cursor. Then, use dynamic type cast-
ing to a VLong class.

 VLong(curs.Field(“long_fld”)).value = 5

This is the same operation, but can be written with a single line of code:

 curs.LongField(“long_fld”).value = 5

Here we ask the cursor to return the field which is already typecasted to type VLong.

Tip: If you need to access cursor fields in a loop, it is much faster to obtain all fields before
the loop, then to access them in the loop by reference.

Example:
 dim fLong as VLong
 dim VString as VString
 dim curs as VCursor
 dim recCount as Long

 curs = db.SQLSelect("SELECT Number, str FROM T")
 fLong = curs.LongField(1)
 fString = curs.StringField(2)

 recCount = curs.RecordCount
 for i = 1 to recCount
 curs.currentRecord = i
 fLong = i
 fString = str(i)
 curs.Add()
 next

V4RBRef-142

Class VCursor Type casting Methods

Class VCursor

Navigation Methods

FirstRecord() as Boolean

Go to the first logical record of a Cursor. Returns TRUE if the first record is found.

Example:

 res = curs.FirstRecord()

LastRecord() as Boolean

Go to the last record of a Cursor. Returns TRUE if the last record is found

Example:

 res = curs.LastRecord()

PrevRecord() as Boolean

Go to the previous record of a Cursor if it exists. Returns TRUE if the previous record is
found. Otherwise, it returns FALSE and this means we are at the first logical record in the
Cursor or the Cursor is empty.

Example:

 res = curs.PrevRecord()

V4RBRef-143

Class VCursor Navigation Methods

Class VCursor

NextRecord() as Boolean

Go to the next logical record of a Cursor if it exists. Returns TRUE if the next record is found.
Otherwise it returns FALSE, which means we are at the last logical record in the Cursor.

Example:

 if(myCursor.FirstRecord())
 Do
 // work here
 Loop Until myCursor.NextRecord() = FALSE
 end if

You can also do this with the ‘Position property’ in conjunction with ‘RecordCount’, but
NextRecord() is more efficient.

Example:

 if(myCursor.RecordCount > 0)
 myCursor.Position = 1
 For i = 1 to myCursor.RecordCount // work here
 myCursor.Position = myCursor.Position + 1
 Next
 end if

V4RBRef-144

Class VCursor Navigation Methods

Class VCursor

Record Methods

SetBlank(inAccess as EvValueAccess = forUpdate)

Each Cursor has a RAM buffer for field values of the current record. This buffer can be
cleared by the SetBlank() method, i.e. all numeric fields become zero, all string fields get
the empty string. If a field is Nullable then it will get a NULL value.

Parameter inAccess can be used to speed up SetBlank() if you add records. In this case
you can specify its value forAdd, so Valentina will not save copies of previouse field values.
In the same time you can always use the default value forUpdate and everyhting will work
correctly.

Example:

 curs.SetBlank(forAdd)
 curs.LongField(1).Value = i
 curs.ShortField(2).Value = i
 res = curs.AddRecord()

AddRecord() as Integer

Adds a new record to the Cursor with the current field values in the RAM buffer.

Returns RecID of added records.

IMPORTANT: it returns RecID of original table where record was inserted! Valentina can do
this because cursor that allows adding of new records always is built on single table.

Example:

 curs.SetBlank()
 curs.LongField(1).Value = i
 curs.ShortField(2).Value = i
 newRecID = curs.AddRecord()

V4RBRef-145

Class VCursor Record Methods

Class VCursor

UpdateRecord()

Updates the current record of a Cursor with the values in the RAM buffer.

It throws error if a record cannot be updated, e.g. cursor is ReadOnly.

Example:

 curs.currentRecord = i
 curs.LongField(1).Value = i + 100
 curs.ShortField(2).Value = i + 100
 curs.UpdateRecord()

UpdateAllRecords()

Updates ALL records of a Cursor with new values. This function can update several fields
of the cursor at once. Valentina will only update fields with new values (dirty fields). It is not
important what record is current when you, assign new values.

This function is much faster than an iteration of the cursor records in a loop to assign new
values.

It throws error if a record cannot be updated, e.g. cursor is ReadOnly.

Example:

 curs.LongField(1).Value = 145
 curs.ShortField(2).Value = 200

 curs.UpdateAllRecords()

V4RBRef-146

Class VCursor Record Methods

Class VCursor

DeleteRecord()

Deletes the current record of a cursor. The next record becomes the current record. Oth-
erwise the previous record becomes current. If a Cursor becomes empty then the current
record is undefined.

Returns FALSE if the record cannot be deleted, e.g. it was locked or does not exist, or a
cursor is read only.

Example:

 curs.DeleteRecord()

DeleteAllRecords()

Deletes all records of the Cursor. The Cursor becomes empty, the current record becomes
undefined.

Returns FALSE if the records cannot be deleted (e.g. cursor is ReadOnly).

Example:

 curs.DeleteAllRecords()

DropRecord()

Removes the current record from a Cursor, but does not delete it from the original Table.

Example:

 curs.DropRecord()

V4RBRef-147

Class VCursor Record Methods

Class VCursor

Import/Export Methods

ImportText(
 inFile as FolderItem,
 inFieldDelimiter as String = chr(09),
 inLineDelimiter as String = LE,
 inEncoding as String = ”UTF-16",
 inHasColumHeader as Boolean = FALSE,
 inMaxRecordsToImport as Integer = 0)

Parameter: Description:
inFile File to be imported.
inFieldDelimiter Character to be used as a field delimeter,
 default is a tab-chr(0x09).
inLineDelimiter Character to be used as a record delimeter, default is the OS Line
 Ending.
inEncoding Encoding of the imported file.
inHasColumnHeader TRUE if the import file has a column header line.
inMaxRecordsToImport The maximum number of records to import.

Imports the specified text file into the fields of the Cursor.

Note: The Cursor must have the flag CanBeUpdated set to TRUE.

The parameters FieldDelimiter and LineDelimiter are optional, i.e. you may specify one of
them or both . By default they are TAB (09) and the OS Line Ending correspondingly.

If the cursor represents a subset of the table-fields, then the omitted fields will be filled with
NULL values if the field in NULLABLE or blank values otherwise.

Importing text to a Cursor works for a single Table only.

Example:

 curs.ImportText(fileToImport, chr(09), chr(13))

V4RBRef-148

Class VCursor Import/Export Methods

Class VCursor

ExportText(
 inFile as FolderItem,
 inFieldDelimiter as String = chr(09),
 inLineDelimiter as String = LE,
 inEncoding as String =”UTF-16",
 inHasColumHeader as Boolean = FALSE)

Parameter: Description:
inFile The file to be imported.
inFieldDelimiter The character to be used as a field delimeter, default is tab-
 chr(0x09).
inLineDelimiter The character to be used as a record delimeter, default is the OS
 Line Ending.
inEncoding Encoding of the imported file.
inHasColumHeader TRUE if import file has colum header line.

This command exports the fields and records of a Cursor to the designated text file. Using
the SELECT statement, you can define the fields to export and their order, as well as the
records to be exported.

Example:

 curs.ExportText(fileToExport, chr(09), chr(13))

V4RBRef-149

Class VCursor Import/Export Methods

Class VCursor

ToArraySet() as VArraySet

This method establish a brige between cursors and sets. You can use this method to obtain
an ArraySet that contains RecID values selected by cursor and in the correct order.

Important to note, that this method will work only with cursor built on the single table. You
cannot use it for JOIN or GROUP BY results, for example.

TIP. If your target is to build cursor and convert it into set, then it is good idea to SELECT
RecID only.

Example:

 curs = db.SqlSelect("SELECT RecID FROM T WHERE ...")

 arraySet = curs.ToArraySet()

 curs = nil // we do not need cursor any more.

V4RBRef-150

Class VCursor Conversion Methods

Class VCursor

Class VSet

Properties

Count as Integer (r/o)
IsSortedByRecID as Boolean
IsEmpty as Boolean (r/o)

Constructor

Clone() as VSet

Element methods

Append(inValue as Integer)
Remove(inValue as Integer)
Include(inValue as Integer) as Boolean

MakeNewIterator() as VSetIterator
SortByRecID()

V4RBRef-151

Class VSet

Class VSet

Properties Description

Count as Integer (r/o)

The number of items in the Set.

Example:

 count = set1.Count

IsSortedByRecID as Boolean (r/o)

Returns TRUE if the Set is sorted by RecID values.

Example:

 sorted = set1.isSortByRecID

IsEmpty as Boolean (r/o)

Returns TRUE if the Set is empty.

Example:

 empty = set1.IsEmply

V4RBRef-152

Class VSet Properties

Class VSet

Constructor

Clone() as VSet

Clones this Set, i.e. create and return a new set which is of the same type, has the same
size and contains the same items.

Example:

 dim s2 as VSet
 s2 = s1.Clone()

V4RBRef-153

Class VSet Constructor

Class VSet

Element Methods

Append(inValue as Integer)

Parameter: Description:
inValue A value.

Appends a new value to the Set.

Example:

 set.Append(rec)

Remove(inValue as Integer)

Parameter: Description:
inValue A value.

Removes the specified value from the Set.

Example:

 set.Remove(rec)

Include(inValue as Integer) as Boolean

Parameter: Description:
inValue A value.

Returns TRUE if the Set contains the specified value.

Example:

 found = set.Include(rec)

V4RBRef-154

Class VSet Element Methods

Class VSet

MakeNewIterator() as VSetIterator

Creates and returns a new Iterator for this Set.

Example:

 iter = s1.MakeNewIterator()

SortByRecID()

Sorts the Set.

Example:

 s1.SortByRecID()

V4RBRef-155

Class VSet Element Methods

Class VSet

Class VArraySet
Constructor

VArraySet(inCount as Integer)
VArraySet(inArraySet as VArraySet)
VArraySet(inBitSet as VBitSet)

Methods

ItemAt(inPosition as Integer) as Integer
ItemAt(inPosition as Integer, Assigns inValue as Integer)

Set operations

Union(inRightSet as VArraySet) as VArraySet
Intersection(inRightSet as VArraySet) as VArraySet
Difference(inRightSet as VArraySet) as VArraySet
SymmetricDifference(inRightSet as VArraySet) as VArraySet

V4RBRef-156

Class VArraySet

Class VArraySet

Constructor

VArraySet(inCount as Integer)

Parameter: Description:
inCount The initial size of ArraySet.

Constructor. Creates an ArraySet with the specified reserved size.

Note: inCount is not the maximum limit. It is just an initial size. If the ArraySet will require
more space then it reallocates more RAM automatically.

Example:

 dim as1
 as1 = new VArraySet(50)

VArraySet(inArraySet as VArraySet)

Parameter: Description:
inArraySet Another ArraySet

Copy constructor. Creates a new ArraySet from the given inArraySet. The new ArraySet is
an exact copy of the inArraySet.

Example:

 dim as2
 as2 = new VArraySet(as1)

VArraySet(inBitSet as VBitSet)

Parameter: Description:
inBitSet The BitSet.

Constructor. Creates a new ArraySet from the given inBitSet. The ArraySet contains the
same items as inBitSet.

Example:

 dim as3
 as3 = new VArraySet(bitSet1)

V4RBRef-157

Class VArraySet

Class VArraySet

Constructor

Methods

ItemAt(inPosition as Integer) as Integer

Parameter: Description:
inPosition Position of item in the array set.

Returns the item of the set at the specified position.

Example:

 recID = as1.ItemAt(5)

ItemAt(inPosition as Integer, Assigns inValue as Integer)

Parameter: Description:
inPosition Position of item in the array set.
inValue A value.

Assigns inValue to the item of the set at the specified position.

Example:

 as1.ItemAt(5) = recID

V4RBRef-158

Class VArraySet

Class VArraySet

Methods

Set Operations

Union(inRightSet as VArraySet) as VArraySet

Parameter: Description:
inRightSet The set to be used in the operation.

Executes a union of this set with the inRightSet set. The result becomes this set. Such an
operation is said to be "in place".

Note: Both sets must be of the same type (BitSet or ArraySet).

Example:

 s1.Union(s2)

Intersection(inRightSet as VArraySet) as VArraySet

Parameter: Description:
inRightSet The set to be used in the operation.

Executes an Intersection of this set with the inRightSet. The result becomes this set. Such
an operation is said to be "in place".

Note: Both sets must be of the same type (BitSet or ArraySet).

Example:

 s1.Intersection(s2)

V4RBRef-159

Class VArraySet

Class VArraySet

Set Operations

Difference(inRightSet as VArraySet) as VArraySet

Parameter: Description:
inRightSet The set to be used in the operation.

Executes the difference of this set with the inRightSet. The result becomes this set. Such
an operation is said to be be "in place".

Note: Both sets must be of the same type (BitSet or ArraySet).

Example:

 s1.Difference(s2)

SymmetricDifference(inRightSet as VArraySet) as VArraySet

Parameter: Description:
inRightSet The set to be used in the operation.

Executes the SymmetricDifference of this set with the inRightSet. The result becomes this
set. Such operation is said to be "in place".

Note: Both sets must be of the same type (BitSet or ArraySet).

Example:

 s1.SymmetricDifference(s2)

V4RBRef-160

Class VArraySet

Class VArraySet

Set Operations

Class VBitSet
Constructor

VBitSet(inMaxCount as Integer)
VBitSet(inMaxCount as Integer, inArraySet as VArraySet)

Set operations

Union(inRightSet as VBitSet) as VBitSet
Intersection(inRightSet as VBitSet) as VBitSet
Difference(inRightSet as VBitSet) as VBitSet
SymmetricDifference(inRightSet as VBitSet) as VBitSet

V4RBRef-161

Class VBitSet

Class VBitSet

Constructor

VBitSet(inMaxCount as Integer)

Parameter: Description:
inMaxCount The maximum value that can be stored in the bitset.

Constructor. Creates a BitSet of the specified size.

Example:

 dim bs1
 bs1 = new VBitSet(50)

VBitSet(inMaxCount as Integer, inArraySet as VArraySet)

Parameter: Description:
inMaxCount The maximal value that can be stored in the bitset.
inArraySet The ArraySet.

Constructor. Creates a new BitSet from the given inArraySet. The BitSet contains the same
items as inArraySet.

Example:

 dim bs2
 bs2 = new VBitSet(as1)

V4RBRef-162

Class VBitSet

Class VBitSet

Constructor

Set Operations

Union(inRightSet as VBitSet) as VBitSet

Parameter: Description:
inRightSet The set to be used in the operation.

Executes a union of this set with the inRightSet set. The result becomes this set. Such an
operation is said to be "in place".

Note: Both sets must be of the same type (BitSet or ArraySet).

Example:

 s1.Union(s2)

Intersection(inRightSet as VBitSet) as VBitSet

Parameter: Description:
inRightSet The set to be used in the operation.

Executes an Intersection of this set with the inRightSet. The result becomes this set. Such
an operation is said to be "in place".

Note: Both sets must be of the same type (BitSet or ArraySet).

Example:

 s1.Intersection(s2)

V4RBRef-163

Class VBitSet

Class VBitSet

Set Operations

Difference(inRightSet as VBitSet) as VBitSet

Parameter: Description:
inRightSet The set to be used in the operation.

Executes the difference of this set with the inRightSet. The result becomes this set. Such
an operation is said to be be "in place".

Note: Both sets must be of the same type (BitSet or ArraySet).

Example:

 s1.Difference(s2)

SymmetricDifference(inRightSet as VBitSet) as VBitSet

Parameter: Description:
inRightSet The set to be used in the operation.

Executes the SymmetricDifference of this set with the inRightSet. The result becomes this
set. Such operation is said to be "in place".

Note: Both sets must be of the same type (BitSet or ArraySet).

Example:

 s1.SymmetricDifference(s2)

V4RBRef-164

Class VBitSet

Class VBitSet

Set Operations

Class VSetIterator

Properties

Value as Integer (r\o)

Methods

FirstItem() as integer
LastItem() as integer
NextItem() as integer
PrevItem() as integer

V4RBRef-165

Class VSetIterator

Class VSetIterator

Properties Description

Value as Integer (r\o)

Returns the current value of the iterator.

Example:

 v = iter.Value

V4RBRef-166

Class VSetIterator Properties

Class VSetIterator

VSetIterator Methods

FirstItem() as integer

Moves the iterator to the first item of the Set.
Returns the value of the item if it is found, else returns 0.

Example:

 v = iter.FirstItem

LastItem() as integer

Moves the iterator to the last item of the Set.
Returns the value of the item if it is found, else returns 0.

Example:

 v = iter.LastItem

NextItem() as integer

Moves the iterator to the next item of the Set.
Returns the value of the item if it is found, else returns 0.

Example:

 v = iter.NextItem

PrevItem() as integer

Moves the iterator to the prev item of the Set.
Returns the value of the item if it is found, else returns 0.

Example:

 v = iter.PrevItem

V4RBRef-167

Class VSetIterator VSetIterator Methods

Class VSetIterator

Class VLink
Properties

BranchCount as Integer (r/o)
ID as Integer(r/o)
IsTemporary as Boolean (r/o)
Name as String
OnDelete as EVOnDelete
OnUpdate as EVOnUpdate
Owner as VTable

Table methods

IsBetween(
 inTableA as VTable,
 inTableB as VTable) as Boolean

Table(inIndex as integer) as VTable

Flush(inFlushTables as Boolean = true)

Search methods

FindLinked(
 inRecID as Integer,
 inTableA as VTable,
 inTableB as VTable,
 inRecursionDirection as EVRecursionDirection = kFromParentToChild)
 as VArraySet

FindLinkedAsBitSet(
 inSet as VSet,
 inTableA as VTable,
 inTableB as VTable,
 inRecursionDirection as EVRecursionDirection = kFromParentToChild)
 as VBitSet

FindExclusivelyLinked(
 inRecID as Integer,
 inTableA as VTable,
 inTableB as VTable,
 inRecursionDirection as EVRecursionDirection = kFromParentToChild)
 as VArraySet

FindAllLinked(
 inTableA as VTable,
 inTableB as VTable,
 inRecursionDirection as EVRecursionDirection = kFromParentToChild)
 as VBitSet

V4RBRef-168

Class VLink

Class VLink

Linking methods

CountLinked(
 inRecID as Integer,
 inTableA as VTable,
 inTableB as VTable,
 inRecursionDirection as EVRecursionDirection = kFromParentToChild)
 as Integer

LinkRecords(inRecID() as Integer)

UnlinkRecords(inRecID() as Integer)

DeleteLinkedRecords(
 inRecID as Integer,
 inTableA as VTable,
 inRecursionDirection as EVRecursionDirection = kFromParentToChild)

DeleteAllLinkedRecords(inTableA as VTable,
 inRecursionDirection as EVRecursionDirection = kFromParentToChild)

IsLinked(inLeftRecID as Integer, inRightRecID as Integer) as Boolean

AsVObjectPtr() as VObjectPtr
AsVBinaryLink() as VBinaryLink

V4RBRef-169

Class VLink

Class VLink

Properties Description

BranchCount as Integer (r/o)

Returns the number of branches for this link.

Example:

 brc = Link.BranchCount

ID as Integer (r/o)

Returns the ID of this link. A temporary link has a negative ID.

Example:

 link_id = Link.ID

IsTemporary as Boolean (r/o)

Returns TRUE if this link is temporary.

Example:

 tmp = Link.IsTemporary

Name as String

Returns the name of the link.

Example:

 s = L ink.Name

V4RBRef-170

Class VLink Properties

Class VLink

OnDelete as EVOnDelete

The behavior on deletion of the record-owner.

Example:

 v = Link.OnDelete

OnUpdate as EVOnUpdate

The behavior on update of the record-owner.

Example:

 v = Link.OnUpdate

Owner as VTable

The table which is owner of the link. For symmetric links 1:1 and M:M Valentina cannot define
which of tables will be owner of the link. You can use this property to define the owner.

Note, you need specify this property only if you are going to use the DeletionControl for
this link.

Example:

 Link.Owner = tblPerson

V4RBRef-171

Class VLink Properties

Class VLink

Table Methods

IsBetween(
 inTableA as VTable,
 inTableB as VTable) as Boolean

Parameter: Description:
inTableA Left table of link.
inTableB Right table of link.

Returns TRUE if this Link links both specified Tables.

Example:

 res = Link.IsBetween(TablA, TablB)

Table(inIndex as integer) as VTable

Parameter: Description:
inIndex The index of table.

Returns a table of the link by index.

Example:

 tbl = Link.Table(i)

Flush(inFlushTables as Boolean = true)

Parameter: Description:
inFlushTables TRUE if Tables of Link also should flush.

Flushes new or modified information of Link. On default it also pass flush() command to
Tables of Link. You can set parameter to be FALSE, in this case Tables are not touched.

Example:

 tbl = Link.Flush()

V4RBRef-172

Class VLink Table Methods

Class VLink

Search Methods

FindLinked(
 inRecID as Integer,
 inTableA as VTable,
 inTableB as VTable,
 inRecursionDirection as EVRecursionDirection = kFromParentToChild)
as VArraySet

Parameter: Description:
inRecID The RecID of a record of the left table.
inTableA Left table of link.
inTableB Right table of link.
inRecursionDirection The direction of movement for a recursive link.

Returns the records from inTableB linked to record with inRecID from inTableA. If zero
records are found then returns NIL.

For a recursive link you should specify the parameter inRecursionDirection. If you specify
kFromParentToChild then the function will use child records of the inRecID record. Other-
wise it will use parent record(s) of the inRecID record.

Example:

 res = Link.FindLinked(rec, TblA, TblB)

FindLinkedAsBitSet(
 inSet as VSet,
 inTableA as VTable,
 inTableB as VTable,
 inRecursionDirection as EVRecursionDirection = kFromParentToChild)
 as VBitSet

Parameter: Description:
inSet Selection of records.
inTableA Left table of link.
inTableB Right table of link.
inRecursionDirection The direction of movement for a recursive link.

Returns the records from inTableB linked to any record specified by inSet from inTableA.
If zero records are found then returns NIL.

For a recursive link you should specify the parameter inRecursionDirection. If you specify
kFromParentToChild then the function will use child records of the inRecID record. Other-
wise it will use parent record(s) of the inRecID record.

Example:

 res = Link.FindLinkedAsBitSet(rec, TblA, TblB)

V4RBRef-173

Class VLink Search Methods

Class VLink

FindExclusivelyLinked(
 inRecID as Integer,
 inTableA as VTable,
 inTableB as VTable,
 inRecursionDirection as EVRecursionDirection = kFromParentToChild)
as VArraySet

Parameter: Description:
inRecID The RecID of a record of the left table.
inTableA Left table of link.
inTableB Right table of link.
inRecursionDirection The direction of movement for a recursive link.

Returns the records from inTableB linked to the record inRecID of inTableA and only to it.
If zero records are found then returns NIL.

For a recursive link you should specify the parameter inRecursionDirection. If you specify
kFromParentToChild then the function will use child records of the inRecID record. Other-
wise it will use parent record(s) of the inRecID record.

Note: This function returns result different from FindLinked() function only for M : M link.

Example:

 res = Link.FindExclusivelyLinked(rec, TblA, TblB)

FindAllLinked(
 inTableA as VTable,
 inTableB as VTable,
 inRecursionDirection as EVRecursionDirection = kFromParentToChild)
as VArraySet

Parameter: Description:
inTableA Left table of link.
inTableB Right table of link.
inRecursionDirection The direction of movement for a recursive link.

Returns all records of inTableB linked to any record of inTableA.If zero records are found
then returns NIL.

Example:

 tbl = Link.FindAllLinked(TblA, TblB)

V4RBRef-174

Class VLink Search Methods

Class VLink

Linking Methods

CountLinked(
 inRecID as Integer,
 inTableA as VTable,
 inTableB as VTable
 inRecursionDirection as EVRecursionDirection = kFromParentToChild)
as Integer

Parameter: Description:
inRecID The RecID of a record of the left table.
inTableA Left table of link.
inTableB Right table of link.
inRecursionDirection The direction of movement for a recursive link.

Returns the number of records of table inTableB linked to the record inRecID of table in-
TableA.

For a recursive link you should specify the parameter inRecursionDirection. If you specify
kFromParentToChild then the function will use child records of the inRecID record. Other-
wise it will use parent record(s) of the inRecID record.

Example:

 tbl = Link.CountLinked(rec, TblA, TblB)

V4RBRef-175

Class VLink Linking Methods

Class VLink

LinkRecords(inRecID() as Integer)

Parameter: Description:
inRecID The RecID of a record of the left table.

Establishes a link between records of linked Tables, specified as an array of RecID values
(Valentina 2.0 supports 2-branch links only, so 2 records must be specified).

The array must contains the correct number of values, in the order of branches of this link.
The order of branches corresponds to the order of Tables on link creation.

Example:

 dim recs(1) as integer // allocate array with 2 items.

 // Link record 1 of the left table to record 3 of the right table of the Link.
 recs(0) = 1
 recs(1) = 3
 Link.LinkRecords(recs)

Example:

 // The same task in syntax:
 Link.LinkRecords(Array(1, 3))

UnlinkRecords(inRecID() as Integer)

Parameter: Description:
inRecID The RecID of a record of the left table.

Breaks the link between records of the linked Table specified as an array of RecID val-
ues.

The array must contain the correct number of values, in the order of branches of this link.
The order of branches corresponds to the order of Tables on link creation.

Example:

 Link.UnlinkRecords(Array(1, 3))

V4RBRef-176

Class VLink Linking Methods

Class VLink

DeleteLinkedRecords(
 inRecID as Integer,
 inTableA as VTable
 inRecursionDirection as EVRecursionDirection = kFromParentToChild)

Parameter: Description:
inRecID The RecID of a record of the left table.
inTableA Left table of link.
inRecursionDirection The direction of movement for a recursive link.

Removes all records that are linked by this Link to the record inRecID of table inTableA.

The action of this function depends on the DeletionControl parameter of the link, which can
be { refuse, delete some records, update some records }.

ERRORS: errRestrict.

Example:

 Link.DeleteLinkedRecords(rec, TblA)

DeleteAllLinkedRecords(inTableA as VTable)

Parameter: Description:
inTableA Left table of link.

Removes all records linked by this Link to the any record of table inTableA.

The action of this function depends on the DeletionControl parameter of the link, which can
be { refuse, delete some records, update some records }.

ERRORS: errRestrict.

Example:

 Link.DeleteAllLinkedRecords(TblA)

IsLinked(inLeftRecID as Integer, inRightRecID as Integer) as Boolean

Параметр: Описание:
inLeftRecID The RecID of a record of the left table.
inRightRecID The RecID of a record of the right table.

Returns TRUE, if the two specified records are linked.

Example:

 res = Link.IsLinked(3, 2)

V4RBRef-177

Class VLink Linking Methods

Class VLink

Class VLink2
Properties

LeftType as EVLinkType (r\o)
RightType as EVLinkType (r\o)

V4RBRef-178

Class VLink2

Class VLink2

Properties Description

LeftType as EVLinkType (r\o)

Returns the relation type for the left branch. Can be kOne or kMany.

Example:

 lt = Link.LeftType

RightType as EVLinkType (r\o)

Returns the relation type for the right branch. Can be KOne or kMany.

Example:

 rt = Link.RightType

V4RBRef-179

Class VLink Properties

Class VLink

Class VBinaryLink

VBinaryLink(
 inName as String,
 inLeftTable as VTable,
 inRightTable as VTable
 inLeftPower as EVLinkType = kOne,
 inRightPower as EVLinkType = kMany
 inOnDelete as EVStorageType = kDefault
 inStorageType as Boolean = false) as VLink

parameter: Description:
inName The name of the link.
inLeftTable Pointer to Left Table.
inRightTable Pointer to Right Table.
inLeftPower The link type for the Left Table.
inRightPower The link type for the Right Table.
inOnDelete The behavior on deletion of the record-owner
inStorageType The storage type of the link.

Creates a new Binary Link between 2 tables of this database.

To specify a link you need to define the following:

• A name of the link, unique in the scope of the database.

• Pointers to 2 tables. One table is named Left, the other is named Right.

• The type of link, i.e. if it is 1 : 1 or 1 : M or M : M.

• The behavior of the link on deletion of a record in the Table-Owner.
- In the case of a 1 : M link. The ONE table is the owner table
- In the rest of the cases (1:1 and M:M) the developer can assign any table to be the
owner.

• The storage type for the link. Can be Disk-based or RAM-based.
The Binary Link creates files on disk to keep information about linked records. This is why
we need to specify the StorageType.

You can specify the same table in the parameters inLeftTable and inRightTable. In this case
you get a recursive link.

Example:

 linkPersonPhone = VBinaryLink(
 "PersonPhone", tblPerson, tblPhone,
 EVLinkType.kMany, EVLinkType.kMany)

V4RBRef-180

Class VBinaryLink

Class VBinaryLink

Interface VConnection

Interface VConnection

Class VConnection
 Only for V4RB Client.

Properties

IsConnected as Boolean // (r/o) Returns TRUE if connection is available.
HostName as String // (r/o) The name/IP of the host where a Valentina Server is located.
UserName as String // (r/o) The name of the current user.
Port as Integer // (r/o) Returns the port number of the server host.

Method

VConnection(
 inHost as String,
 inUserName as String,
 inUserPassword as String,
 inPort as Integer = 15432,
 inTimeOut as Integer = 5,
 inOptions as String = "")

Connection Methods

Open()
Close()
UseSSL()

V4RBRef-181

Interface VConnection

Interface VConnection

Properties Description

IsConnected as Boolean (r/o)

Returns TRUE if the connection is available, this method can send a ping-package to
server to check this.

Example:

 res = connection.IsConnected

HostName as String (r/o)

Returns a string that contains the name of the Valentina Server host to which this VCon-
nection is connected.

Example:

 version = connection.HostName

Port as Integer (r/o)

Returns the port number of the server host to which this connection is connected to.

Example:

 port = connection.Port

UserName as String (r/o)

Returns user name of this connection.

Note: this is the same name that was used on creation of this Connection.

Example:

 userName = connection.UserName

V4RBRef-182

Interface VConnection

Interface VConnection

Creation of VConnection
VConnection(
 inHost as String,
 inUserName as String,
 inUserPassword as String,
 inPort as Integer = 15432,
 inTimeOut as Integer = 5,
 inOptions as String = "")

Parameter: Description:
inHost The IP-address or DNS name of the host.
inUserName The user name.
inUserPassword The user password.
inPort The port number that listens to the Server on inHost.
 By default it is the standard port of Valentina Server.
inTimeOut TimeOut in seconds to wait for a Server response.
inOptions A string of additional options.

This method constructs a VConnection object. This constructor simply stores parameters
and does not try connect. The real connection occurs using Open() method.

Example:

 dim connection as VConnection = new VConnection("localhost", "sa", "sa")

 dim connection as VConnection = new VConnection("123.456.789.123", "sa", "sa")

V4RBRef-183

Interface VConnection

Interface VConnection

Connection Methods

Open()

Establishes a connection to a Valentina Server.

Errors: Wrong user name,
 Wrong password,
 the user is not an administrator,
 connection cannot be established.

Example:

 dim connection as VConnection
 connection = new VConnection("localhost", "sa", "sa")
 connection.Open()

Close()

Closes the connection with the server. After this any objects created in the scope of this
connection (VDatabase, VTable, VCursor, ...) becomes invalid and you should not try to
use it, otherwise most probably you will get ERR_STREAM_XXXX error.

NOTE: VConnection.Open() and .Close() methods are similar to Init/ShutDown methods
in means that you cannot reuse any objects created between these calls in the scope of
this connection. Instead on the next Open() you need to create all objects again starting
from VDatabase object.

Example:

 dim connection as VConnection
 connection = new VConnection("localhost", "sa", "sa")
 connection.Open()
 ...
 connection.Close()

UseSSL()

You must call this method right BEFORE VConnection.Open() method if you want establish
a secure connection to Valentina Server. Note that VServer should listen for SSL port to
be able accept such connection.

Example:

 dim connection as VConnection
 connection = new VConnection("localhost", "sa", "sa")
 connection.UseSSL()
 connection.Open()
 ...
 connection.Close()

V4RBRef-184

Class VServer
 Only for V4RB Client.

Properties

ConnectionCount as Integer // (r/o) The number of active connections to a server.
DatabaseCount as Integer // (r/o) The number of databases that the server recognizes.
UserCount as Integer // (r/o) Returns the count of registered users.
Version as String // (r/o) Version of the server.

Method

VServer(
 inConnection As VConnection)

Connection Methods

Restart()
Shutdown()
CancelConnection (inConnectionID as Integer)
Refresh()

INI-File Methods

GetVariable(inName as String) as String
SetVariable(inName as String, inValue as String)

Master databases methods

RegisterDatabase(inDbName as String, inServerPath as String = "")
UnregisterDatabase(inDbName as String) as Boolean

V4RBRef-185

Class VServer

Class VServer

User Methods

AddUser(
 inUserName as String,
 inPassword as String,
 isAdmin as Integer = FALSE)

RemoveUser(inUserName as String)

ChangeUserPassword(
 inUserName as String,
 inNewPassword as String)

GetUserName(inUserIndex as Integer) as String
GetUserIsAdmin(inUserIndex as Integer) as Boolean

DatabaseInfo methods

DatabaseInfo(inIndex as Integer) as VDatabaseInfo

V4RBRef-186

Class VServer

Class VServer

Class Description
You will only need to use this class in developing the server portion of a Server application.
This class allows you to develop your own front end for VServer. It allows to managing
parameters of the Server for a user which has administration rights, locally or remotely.

V4RBRef-187Class VServer

 Class DescriptionClass VServer

Properties Description

ConnectionCount as Integer (r/o)

Returns the number of all active connections to the server.

Example:

 connCount = server.ConnectionCount

DatabaseCount as Integer (r/o)

Returns the number of databases that a server knows about. In other words, this is the
number of databases registered in the Master Database of the VServer.

Example:

 dbCount = server.DatabaseCount

UserCount as Integer (r/o)

Returns the number of registered users.

Example:

 count = server.UserCount

Version as String (r/o)

Returns a string that contains the VServer version number.

Example:

 version = server.Version

V4RBRef-188

Class VServer Properties

Class VServer

Creation of VServer
VServer(
 inConnection As VConnection)

Parameter: Description:
inConnection VConnection object.

This method constructs a VServer object. This constructor simply stores parameters and
does not try connect. The real connection occurs using Open().

Note: Only Administrator User(s) can use this object.

Example:

 dim server as VServer = new VServer(inConnection)

V4RBRef-189

Class VServer Creation of VServer

Class VServer

Connection Methods

CancelConnection(inConnectionID as Integer)

Parameter Description
inConnectionID The connection ID.

Cancels an existing connection by its ID.

Example:

 server.CancelConnection(connID)

Restart()

Forces a restart of the VServer.

Example:

 server.Restart()

Refresh()

This method allows you to refresh the list of DatabaseInfo objects. This method sends a
request to the Valentina Server.

Example:

 server.Refresh()

Shutdown()

Shuts down the VServer.

Note: After this operation there is no way to restart VServer from the application. If you
want to restart the VServer, use Restart().

Example:

 server.Shutdown()

V4RBRef-190

Class VServer Connection Methods

Class VServer

INI-File Methods

GetVariable(inName as String) as String

Parameter: Description:
inName The name of server variable.

This method allows you to read a value of the specified Server Variable. The name of the
variable is case insensitive. With names of variables you can use constants of the INI-file
of VServer. For more information, refer to the Valentina Server documentation.

Example:

 cache = server.GetVariable("CacheSize")

SetVariable(
 inName as String,
 inNewValue as String)

Parameter: Description:
inName The name of the server variable.
inNewValue New value for this variable.

This method allows you to change a value of the specified Server Variable. The name of
variable is case insensitive. With names of variables you can use constants of the INI-file
of VServer. For more information, refer to the Valentina Server documentation.

NOTE: Some variables require a restart of VServer to affect changes.

Example:

 server.SetVariable("CacheSize", 8)

V4RBRef-191

Class VServer INI-File Methods

Class VServer

Master Database Methods

RegisterDatabase(
 inDbName as String,
 inServerFullPath as String = "")

Parameter: Description:
inDbName The name of the database.
inServerFullPath The full path of the database located on the server computer.

You can use this method to register in Vserver some existed database. This command
adds a new record to the Master Database.

Usually you need just to drop a database into the folder pointed by .ini varable "System-
Catalog", and call this method specifying only the name of database. Also it is possible to
specify the full path of database on the server computer.

Note: For a MacOS X version of Valentina Server, use a UNIX path.

Errors:
 The Database Name already exists.

Example:
 server.RegisterDatabase("DbName")

This assumes that a database with name "DbName" or "DbName.vdb" exists in the "data-
bases" folder of VServer.

Example:
 server.RegisterDatabase("Accounting", "C:\SomeCompany\account2002.vdb")

UnregisterDatabase(inDbName as String) as Boolean

Parameter: Description:
inDbName The name of a database.

If you want to remove some database from the scope of the VServer, you need to remove
the record about it from the Master Database. You can do this using this method.

Errors:

 Database Name not found.

Example:

 server.UnregisterDatabase("Accounting")

V4RBRef-192

Class VServer Master Database Methods

Class VServer

User Methods

AddUser(
 inUserName as String,
 inPassword as String,
 isAdmin as integer = FALSE)

Parameter: Description:
inUserName The user name.
inPassword The password for this user.
IsAdmin TRUE if this user has administrator permissions.

An Administrator can add new users to the Master Database.

Errors:
 The user name already exists.

Example:

 server.AddUser("Peter", "a1234fteg4")

RemoveUser(inUserName as String)

Parameter: Description:
inUserName The user name.

An administrator can remove users from the Master Database.

Errors:
 The user name is not found.

Example:

 server.RemoveUser("Peter")

V4RBRef-193

Class VServer User Methods

Class VServer

ChangeUserPassword(
 inUserName as String,
 inNewPassword as String)

Parameter: Description:
inUserName The user name.
inNewPassword New password for this user.

An administrator can change the password of a user.

Errors:
 The user name is not found.

Example:

 server.ChangeUserPassword("Peter", "rvsa3341")

GetUserName(inUserIndex as Integer) as String

Parameter Description
inUserIndex The user index.

Returns the name of the user by index.

Example:

 server.GetUserName()

GetUserIsAdmin(inUserIndex as Integer) as Boolean

Parameter: Description:
inUserIndex The user index.

Returns TRUE if the specified user is an administrator.

Example:

 res = server.GetUserIsAdmin(i)

V4RBRef-194

Class VServer User Methods

Class VServer

DatabaseInfo Methods

DatabaseInfo(inIndex as Integer) as VDatabaseInfo

Parameter: Description:
inIndex 1-based index

This method allows you to iterate through the collection of DatabaseInfo objects.

The Vserver instance obtains a list of the DatabaseInfo upon OpenSession(). You can
periodically refresh this list using the Refresh() method.

Example:

 dim dbi as VDatabaseInfo

 for i = 1 to server.DatabaseCount
 dbi = server.DatabaseInfo(i)

 next

V4RBRef-195

Class VServer DatabaseInfo Methods

Class VServer

Class VDatabaseInfo
 Only for V4RB Client.

Properties

ClientCount as Integer // (r/o) The number of connected clients.
CursorCount as Integer // (r/o) The number of cursors currently on this database.
Name as String // (r/o) The name of the database.
Path as String // (r/o) The full path of the database on the server.

Methods

ClientInfo(inIndex as Integer) as VClientInfo

Refresh()

VKernel-196

Class VDatabaseInfo

Class VDatabaseInfo

Methods

ClientInfo(inIndex as Integer) as VClientInfo

Parameter: Description:
inIndex The index of ClientInfo object.

This method allows you to iterate through the collection of ClientInfo objects.

The object of a DatabaseInfo gets the list of ClientInfo on its creation. You can periodically
refresh this list using the Refresh() method.

Example:

 dim ci as VclientInfo

 for i = 1 to dbi.ClientCount
 ci = dbi.DatabaseInfo

 next

Refresh()

This method allows you to refresh the list of ClientInfo objects. This method sends a request
to the Valentina Server.

Example:

 dbi.Refresh()

V4RBRef-197

Class VDatabaseInfo Methods

Class VDatabaseInfo

Class VClientInfo
 Only for a V4RB Client.

Properties

Address as String // (r/o) The IP address of the client computer.
ConnectionID as Integer // (r/o) The ID of this connection.
CursorCount as Integer // (r/o) The number of cursors of this connection.
Login as String // (r/o) The login of this connection.
Port as Integer // (r/o) The port number of the client computer..

V4RBRef-198

Class VClientInfo

Class VClientInfo

V4RBRef-199

Class VReport

Class VReport

Class VReport
Properties

PageCount as Integer (r/o)

PaperSize as EVPaperSize(r/o)
PaperOrientation as EVPaperOrientation (r/o)

PreviewZoom as Integer
PreviewWidth as Integer
PreviewHeight as Integer

ReportProperty(inName as String) as String
ReportProperty(inName as String, inValue as String)

Construction

VReport(inCursor as VCursor, inReportLocation as Location)

Printing Methods

Print(inPageIndex as Unsigned Integer = 0)
PrintToPDF(inPdfLocation as Location, inPageIndex as Unsigned Integer = 0)

V4RBRef-200

Class VReport

Class VReport

Class VReport Properties

Class VReport

PageCount as Integer (r/o)

Returns the count of pages that will be produced fro this report using the specified Cursor
and the current Page format settings.

Example:

 pages = report.PageCount

PaperSize as EVPaperSize (r/o)

Returns the count of pages that will be produced fro this report using the specified Cursor
and the current Page format settings.

Example:

 psize = report.PaperSize

PaperOrientation as EVPaperOrientation (r/o)

Returns the count of pages that will be produced fro this report using the specified Cursor
and the current Page format settings.

Example:

 orient = report.PaperOrientation

V4RBRef-201

Class VReport

Class VReport

Class VReport Properties

Class VReport

PreviewZoom as Integer

Specifies the preview zoom in percents. Default is 100%. Can be in the range from 1% to
1000%.

Example:

 report.PreviewZoom = 50

PreviewWidth as Integer

Specifies the preview width in pixels.

Example:

 report.PreviewWidth = 150

PreviewHeight as Integer

Specifies the preview height in pixels.

Example:

 report.PreviewHeight = 450

ReportProperty(inName as String) as String

Returns the value of a Report Property specified by its name.

Example:

 propValue = report.ReportProperty(“ShowPhotos”)

ReportProperty(inName as String, inValue as String)

Changes the value of some ReportProperty specified by its name.

Example:

 report.ReportProperty(“ShowPhotos”) = “0”

V4RBRef-202

Class VReport

Class VReport

Class VReport Construction

Class VReport

Constructor(inCursor As VCursor, inReportLocation as FolderItem)

Parameter: Description:
inCursor VCursor prepared as you need to contain records to be reported.
inReportLocation The location of a report file “*.vrp”

Constructs a new instance of VReport class.

You should provide some VCursor, which you must prepare before using e.g. db.SqlSelect()
method. This cursor can be result of query as to a local database, so to a remote database
managed by a Valentina Server.

Also you need provide disk location of “.vrp” file that contains description of some report.
You should design a report with help of Valentina Studio Pro using its Report Editor, then
you can export separate report into “.vrp” file.

Example:

sub PrintPeopleOfAge(integer inAge)
 dim rp1 as VReport
 dim cursPeople as VCursor

 cursPeople = mdb.SqlSelect(
 “SELECT * FROM Peson WHERE fldAge = “ + Str(inAge))

 rp1 = new VReport(cursPeople, GetLocation(“Reports/People.vrp”))

 ...
end

NOTE: You also can use directly Valentina Project File “.vsp”, which contains many reports.
You can do this with the help of VReportContainer class

V4RBRef-203

Class VReport

Class VReport

Class VReport Printing Methods

Class VReport

Print(inPageIndex as Unsigned Integer = 0)

Parameter: Description:
inPageIndex The index of a page to be printed (1..N).
 Zero to print all records of the report.

Returns the version of the database file format. It can work even with a closed database.

Example:

 theReport.Print()

PrintToPDF(inPdfLocation as Location, inPageIndex as Unsigned Integer = 0)

Parameter: Description:
inLocation The location for generated PDF file.
inPageIndex The index of a page to be printed (1..N).
 Zero to print all records of the report.

Returns the version of the database file format. It can work even with a closed database.

Example:

 theReport.PrintToPDF(GetLocation(“report_1.pdf”))

V4RBRef-204

Class VReportContainer

Class VReportContainer

Class VReportContainer
Properties

ReportCount as Integer (r/o)
ReportName(inIndex as Integer) as String (r/o)

Construction

VReportContainer(inProjectLocation as FolderItem)

Printing Methods

MakeNewReport(inCursor as VCursor, inIndex as integer) as VReport
MakeNewReport(inCursor as VCursor, inName as string) as VReport

V4RBRef-205

Class VReportContainer

Class VReportContainer

Class VReportContainer Construction

Class VReportContainer

Constructor(inProjectLocation as FolderItem)

Parameter: Description:
inProjectLocation The location of a Valentina project file “*.vsp”.

Constructs a new instance of VReportContainer class.

You need provide a disk location of “.vsp” file that contains description of one or more
Reports.

Example:

sub PrintPeopleOfAge(integer inAge)
 dim pAllReports as VReportContainer

 pAllReports = new VReportContainer(GetFolderItem(“Reports/MyProject.vsp”))

 // Now you can use methods of VReportContainer class to:
 // * investigate how many reports are inside of this container.
 // * get their names to display in e.g. menu
 // * extract single reports creating VReport class instance.
end

V4RBRef-206

Class VReportContainer Properties

Class VReportContainer

ReportCount as Integer (r/o)

Returns the count of reports inside of this container.

Example:

 dim my_reports as VReportContainer

 for i = 1 to my_reports.ReportCount
 ...
 end if

ReportName(inIndex as Integer) as String (r/o)

Returns the name of Nth reports from his container. This name can be used for example
to show list of all reports in the container.

Example:

 dim my_reports as VReportContainer
 dim repName as String

 for i = 1 to my_reports.ReportCount
 repName = my_reports.ReportName(i)
 end if

